Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2023

Supplementary Materials

Probing into the mechanisms of disinfection byproduct formation from natural organic matter and model compounds after UV/chlorine treatment

Ding Wang^{a,b,1}, Zhechao Hua^{a,1}, Yonglin Cui^a, Zijun Dong^c, Chen Li^d, Jingyun Fang^{a,*}

^a Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation
Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou,
510275, China

^b General Institute of Water Resources and Hydropower Planning and Design, Beijing 100120, China

^c College of Civil and Transportation Engineering, the Underground Polis Academy, Shenzhen University, Shenzhen 518048, China

^d Jiangsu Academy of Environmental Industry and Technology Corp., Nanjing 210019, China

* Corresponding author. E-mail: <u>fangjy3@mail.sysu.edu.cn</u>

¹ Shared first authorship.

Lists of Captions

Table S1. Rate constants of NOM and model compounds with chlorine and radicals at pH 7.0. .3

- **Table S2.** Alteration of UV absorbance at 254 nm (UV_{254}), DOC concentration and specific UVabsorbance (SUVA) of NOM after chlorination, UV/chlorine and UV treatments......4

- **Figure S3.** The degradation of phenol and the formation of chlorophenols in chlorination (a) and UV/chlorine process (b). Conditions: [phenol] = 50 μ M, [chlorine] = 500 μ M, pH = 7.0....7

	$k_{\text{chlorine}} (\mathrm{M}^{-1} \mathrm{s}^{-1})$	<i>k</i> _{HO} • (M ⁻¹ s ⁻¹)	k_{Cl} (M ⁻¹ s ⁻¹)	$k_{\text{Cl}_2} \cdot (\text{M}^{-1} \text{ s}^{-1})$	k_{CIO} (M ⁻¹ s ⁻¹)
NOM	2.4 [1]	$3 \times 10^{8} ^{[2]}$	1.6×10^{8} [2]	$1.7 imes 10^{7}$ [2]	5.4×10^{8} ^[3]
Phenol	18 [4]	$6.6 imes 10^{9} {}^{[5]}$	$1.1 imes 10^{10}$ [5]	$3.2 imes 10^{8} {}^{[5]}$	$3.4\times10^{6\text{b}}$
Resorcinol	$4 imes 10^{3}$ [4]	$1.2 imes 10^{10}$ [6]	$1.4 imes 10^{10}\text{a}$	$8.6 imes10^{9a}$	$2.2 \times 10^{6 \text{ b}}$
Benzoic acid	Negligible ^[4]	5.9 × 10 ^{9 [7]}	$1.8 imes 10^{10}$ [7]	2×10^{6} [7]	$< 1 \times 10^{6}$ [7]
Methylamine	3.2×10^{4} ^[4]	N.D.	N.D.	N.D.	N.D.
Dimethylamine	$8.9 imes 10^{3}$ ^[4]	N.D.	N.D.	N.D.	N.D.
Tyrosine	$\sim 1 \times 10^{4} {}^{[4]}$	$1.3 imes 10^{10}$ [6]	$1.2 imes 10^{10}\text{a}$	$4.6 imes 10^{8 \text{ a}}$	N.D.
Asparagine	$\sim 1 \times 10^{4} {}^{[4]}$	$4.9 imes 10^{7}$ [6]	$7.2 imes 10^{8 a}$	Negligible ^a	N.D.

Table S1. Rate constants of NOM and model compounds with free chlorine and radicals at pH 7.0.

N.D. = Not determined.

^a Determined in this study.

^b Assumed in this study.

	$UV_{254}(cm^{-1})$	DOC (mg/L)	SUVA (L/mg/m)
Untreated NOM	0.1112	3	3.7
Chlorination	0.0892	2.7	3.3
UV/chlorine	0.0456	2.4	1.9
UV	0.1063	2.9	3.7

Table S2. Alteration of UV absorbance at 254 nm (UV254), DOC concentration and specific UVabsorbance (SUVA) of NOM after chlorination, UV/chlorine and UV treatments.

Figure S1. Chlorine residuals after 10 min UV, chlorination and UV/chlorine treatment, and 24 h post chlorination. Conditions: [NOM] = 3 mg/L, [model compounds] = 50 μ M, [chlorine] = 15 mg/L for NOM, 300 μ M for benzoate, methylamine, and dimethylamine, 500 μ M for phenol, resorcinol, and asparagine, and 750 μ M for tyrosine, pH = 7.0.

Figure S2. The contributions of reactive species to NOM transformation in the UV/chlorine process. Conditions: [NOM] = 3 mg/L, [chlorine] = 15 mg/L, pH = 7.0.

Figure S3. The degradation of phenol and the formation of chlorophenols in chlorination (a) and UV/chlorine process (b). Conditions: [phenol] = 50 μ M, [chlorine] = 500 μ M, pH = 7.0.

Figure S4. The formation of methylamine from dimethylamine during UV/chlorine treatment. Conditions: $[dimethylamine]_0 = 50 \ \mu\text{M}$, $[chlorine] = 300 \ \mu\text{M}$, pH = 7.0.

References

(1) Westerhoff, P.; Chao, P.; Mash, H., Reactivity of natural organic matter with aqueous chlorine and bromine, *Water Res.*, 2004, **38**, 1502-1513.

(2) Lei, Y.; Lei, X.; Westerhoff, P.; Zhang, X.; Yang, X., Reactivity of chlorine radicals (Cl• and Cl₂-) with dissolved organic matter and the formation of chlorinated byproducts, *Environ. Sci. Technol.*, 2021, **55**, 689-699.

(3) Guo, K.; Wu, Z.; Shang, C.; Yao, B.; Hou, S.; Yang, X.; Song, W.; Fang, J., Radical chemistry and structural relationships of PPCP degradation by UV/chlorine treatment in simulated drinking water, *Environ. Sci. Technol.*, 2017, **51**, 10431-10439.

(4) Deborde, M.; von Gunten, U., Reactions of chlorine with inorganic and organic compounds during water treatment – Kinetics and mechanisms: A critical review, *Water Res.*, 2008, **42**, 13-51.

(5) Lei, Y.; Cheng, S.; Luo, N.; Yang, X.; An, T., Rate constants and mechanisms of the reactions of Cl• and Cl₂- with trace organic contaminants, *Environ. Sci. Technol.*, 2019, **53**, 11170-11182.

(6) NIST, http://www3.nd.edu/~ndrlrcdc/index.html (Accessed March 29, 2020). 2020.

(7) Fang, J.; Fu, Y.; Shang, C., The roles of reactive species in micropollutant degradation in the UV/free chlorine system, *Environ. Sci. Technol.*, 2014, **48**, 1859-1868.