1	Supporting Information for:
2	
3	Direct non-target analysis of dissolved organic matter and disinfection
4	by-products in drinking water with nanoLC-FT-ICR-MS
5	Limei Han ¹ , Martin Lohse ¹ , Maolida Nihemaiti ¹ , Thorsten Reemtsma ^{1,2} , and Oliver J.
6	Lechtenfeld*1,3
7	
8	¹ Department of Analytical Chemistry, Helmholtz Centre for Environmental Research (UFZ), 04318 Leipzig,
9	Germany
10	² Institute of Analytical Chemistry, University of Leipzig, 04103 Leipzig, Germany
11	³ ProVIS – Centre for Chemical Microscopy, Helmholtz Centre for Environmental Research (UFZ), 04318 Leipzig,
12	Germany
13 14	* Corresponding Author: oliver.lechtenfeld@ufz.de

S1

15 Text S1: Drinking water samples

The drinking water treatment plants A and B are operating with 38.000 m³/d and 25.000 m³/d capacity, respectively. Both DWTPs receive water from a nearby river via bank filtration. The water treatment process in both plants are, in short: A) bank filtration, mechanical deacidification/aeration, sand filtration, and disinfection with chlorine (Cl₂) gas; B) bank filtration, mechanical deacidification/aeration, flocculation, sand filtration, and disinfection with chlorine dioxide (ClO₂). After disinfection, both DWTPs directly supply the drinking water to consumers.

22

23

Table S1. Chemical parameters of the drinking water samples used in this study.

DWTP		DOC (mg/L)	Chlorine (mg/L)
	Before disinfection	2.1	ND*
DWIT	After disinfection	2.0	0.2
	Before disinfection	2.5	ND*
DWTP-B	After disinfection	2.7	ND*

24

* ND: Not detected (below detection limit).

26 Table S2. Chemical properties and retention time (RT) of model compounds on the C18 column used

27	in this study.
----	----------------

		Concentration		Molecular	Log D	RT	Company	
#	Compound	(ppm)	Formula	mass (Da)	(pH3)	(min)		
1	D-Glucuronic acid	0.2	C ₆ H ₁₀ O ₇	194.14	-2.82	7.5-	Sigma-Aldrich	
	2-(4-(2,2-Dicarboxy-		$C_{16}H_{18}O_{10}$	370.31	0.01	15.6-	Sigma-Aldrich	
2	ethyl)-2,5-dimethoxy-	0.04				16.2		
	benzyl)malonic acid							
	lsoferulic Acid 3-O-ß- D-Glucuronide	erulic Acid 3-O-ß- 0.04 C ₁₆ H ₁₈ O ₁₀			16.0	Toronto		
3			$C_{16}H_{18}O_{10}$	370.31	-0.65	10.9-	Research	
		D-Glucuronide				17.5	Chemicals	
4	Vanillic acid	47	C ₈ H ₈ O ₄ 168.15	100.15		16.3-	Cience Aldrich	
4		4.7		1.14	16.9	Sigma-Aldrich		
5	Fraxin	5 movin 0.04 C. II		270.21	4.25	18.2-		
		0.04	С ₁₆ п ₁₈ О ₁₀	370.31	-1.25	18.7	Sigma-Aldrich	

28

30Table S3. The gradient program used in the nanoLC system. The flow rate was set to 50031nL/min.

Time (min)	MeOH (v/v %)	ultrapure water (v/v %)		
0	1	99		
0.5	1	99		
10.5	99	1		
30.5	99	1		
65	1	99		

32

Figure S1. Extracted ion chromatograms (EICs) of model compounds D-Glucuronic acid (red),
 Vanillic acid (blue), and 3 isomeric compounds (green: 2-(4-(2,2-Dicarboxy-ethyl)-2,5 dimethoxy-benzyl)malonic acid, Isoferulic Acid 3-O-ß-D-Glucuronide, and Fraxin) using the
 nanoLC method.

- 41 Table S4. Comparison of the chromatographic parameters for three isomeric compounds using
- 42 HPLC (¹) and nanoLC (this study) methods.

Compounds	k-value* on nanoLC column ^{#1}	k-value* on RPLC column ^{#2}		
2-(4-(2,2-Dicarboxy-ethyl)-2,5- dimethoxy-benzyl)malonic acid	1.1	2.3		
Isoferulic Acid 3-O-ß-D-Glucuronide	1.3	2.4		
Fraxin	1.5	2.7		

- 43 * Retention factor (k-values) are calculated by: $k = (t_R t_0)/t_0$ with t_R : retention time of the 44 analyte and t_0 : column dead time.
- 45 ^{#1} Acclaim PepMap, 75 μm x 150 mm, 3 μm, 100 Å, Thermo Fisher Scientific, USA; flow rate
 46 500 nL/min.
- 47 ^{#2} ACQUITY HSS T3, 1.8 μm, 100 Å, 150x3mm, Waters, USA; flow rate 0.2 mL/min.

49Table S5. Mass resolving power at m/z 400 in samples DW-nLC-A and DW-SPE-nLC-A in50different segments.

	DW-nLC-A	DW-SPE-nLC-A		
Segment (min)	Mass resolving power at m/z 400			
11-11.5	278963	NA		
11.5-12	287997	359793		
12-12.5	253787	288076		
12.5-13	270668	273120		
13-13.5	291577	261661		
13.5-14	288383	272381		
14-14.5	278164	265052		
14.5-15	268308	263016		
15-15.5	267877	278540		
15.5-16	275574	280936		
16-16.5	263983	268291		
16.5-17	266621	279894		
17-17.5	275722	276978		
17.5-18	273465	277444		
18-18.5	270342	266645		
18.5-19	270685	260556		
19-19.5	268027	275142		
19.5-20	256972	274119		
20-20.5	262094	260818		
20.5-21	274556	271424		

54 Figure S2. Total number of DOM compounds detected in DW-nLC-A and DW-SPE-nLC-A. The white 55 lines represent the number of shared compounds between both samples in the respective segment.

57Figure S3. All uniquely detected DOM compounds in SPE (DW-SPE-
nLC-A, blue) and non-SPE (DW-nLC-A, dark blue) processed samples.

Figure S4. Intensity weighted average modified aromaticity index (AI_{mod}) (a) and DBE-O (b) of DOM
 compounds in different segments in SPE (DW-SPE-nLC-A, blue) and non-SPE (DW-nLC-A, dark blue)
 processed samples.

60

66Figure S5. EIC of m/z 313.0929, $C_{14}H_{18}O_8$ in DW67nLC-A (light blue, extracted with SPE).

71 Figure S6. Formula class distribution of non-halogenated DBP compounds in sample DW-nLC-B. The

bars indicate the total number of non-halogenated DBPs detected in each segment distinguished by

73 formula classes (CHO, CHNO, CHOS, CHNOS, and others). The inlay summarizes the percentage of

74 formula classes of all non-halogenated DBPs (all segments combined).

Figure S7. Intensity weighted average hydrogen-to-carbon (H/C) vs oxygen-to-carbon (O/C)
 ratios of all segments of DOM (square, connected with blue line) and non-halogenated DBPs
 (diamond, connected with purple line) MFs detected in a) DW-nLC-A and b) DW-nLC-B. Color
 represents mean retention time (min) of segments. Lines connecting dots are used as visual
 aid.

- 83 Table S6. Peak mass to charge ratio (*m/z*), signal to noise ratio (S/N), molecular formula (MF), and MF
- 84 hydrogen to carbon ratio (H/C), oxygen to carbon ratio (O/C), double bond equivalent (DBE), double
- 85 bond equivalent minus oxygen (DBE-O), and retention time (RT) of corresponding segment of detected
- 86 chlorinated DBPS (Cl-DBPs) in sample DW-nLC-A and DW-nLC-B.

#	peak m/z	peak S/N	Molecular formula	H/C	O/C	DBE	DBE- O	RT (min)	sample	Figure S8
1	323.03286	47	C15 H13 Cl1 O6	0.87	0.40	9	3	16-16.5	DW-nLC-A	а
2	360.19465	52	C18 H32 Cl1 N1 O4	1.78	0.22	3	-1	18-18.5	DW-nLC-A	b
3	519.32081	60	C26 H49 Cl1 N2 O6	1.89	0.23	3	-3	11.5-12	DW-nLC-B	С
4	429.13223	33	C20 H27 Cl1 O8	1.35	0.40	7	-1	16.5-17	DW-nLC-B	d
5	329.06992	48	C17 H15 Cl1 N2 O3	0.89	0.18	11	8	17-17.5	DW-nLC-B	е
6	413.13738	37	C20 H27 Cl1 O7	1.35	0.35	7	0	17-17.5	DW-nLC-B	f
7	378.20526	54	C18 H34 Cl1 N1 O5	1.89	0.28	2	-3	18-18.5	DW-nLC-B	g
8	396.21586	50	C18 H36 Cl1 N1 O6	2.00	0.33	1	-5	18-18.5	DW-nLC-B	h
9	396.21586	59	C18 H36 Cl1 N1 O6	2.00	0.33	1	-5	18.5-19	DW-nLC-B	i
10	280.98919	67	C9 H11 Cl1 O6 S1	1.22	0.67	4	-2	18.5-19	DW-nLC-B	j
11	336.19467	53	C16 H32 Cl1 N1 O4	2.00	0.25	1	-3	18.5-19	DW-nLC-B	k
12	415.14322	38	C22 H25 Cl1 N2 O4	1.14	0.18	11	7	19-19.5	DW-nLC-B	Ι
13	377.02334	13	C15 H17 Cl3 N2 O3	1.13	0.20	7	4	19.5-20	DW-nLC-B	m
14	382.23658	27	C18 H38 Cl1 N1 O5	2.11	0.28	0	-5	19.5-20	DW-nLC-B	n
15	348.23106	95	C18 H36 Cl1 N1 O3	2.00	0.17	1	-2	20-20.5	DW-nLC-B	0
16	344.19981	101	C18 H32 Cl1 N1 O3	1.78	0.17	3	0	20-20.5	DW-nLC-B	р

88

89

98Figure S8. Raw spectra (black) and theoretical isotopologue intensity pattern matching for 1699CI-DBPs (ref. Table S6) detected in DW-nLC-A (a and b) and DW-nLC-B (c to p). The mass

differences of isotopologue peaks were indicated with black (raw spectra) and red (theoretical isotopologue) arrows.

Figure S9. EICs of molecular formula a) C9 H11 Cl1 O6 S1, b) C15 H17 Cl3 N2 O3, and c) C18 H32 Cl1 N1 O3. For mono-chlorinated MF: ³⁵Cl₁ (blue), ³⁷Cl₁ (black); for tri-chlorinated MF: ³⁵Cl₃ (blue), ³⁵Cl₂³⁷Cl₁ (black), ³⁵Cl₁³⁷Cl₂ (light-blue). Inside figures: the theoretical isotopologue peaks (red) and measured peaks (blue, black, and light-blue) in raw spectra in DW-nLC-B. The mass differences of isotopologue peaks were indicated with black (raw spectra) and red (theoretical isotopologue) arrows.

110 Additional References:

- 111 (1) Han, L.; Kaesler, J.; Peng, C.; Reemtsma, T.; Lechtenfeld, O. J. Online Counter Gradient LC-FT-ICR-MS
- 112 Enables Detection of Highly Polar Natural Organic Matter Fractions. Analytical Chemistry 2021, 93 (3),
- 113 1740-1748. DOI: 10.1021/acs.analchem.0c04426.