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A. Sensors and sites 

  
Fig. A1. The sensor validation setup using a gage plate and camera.1 
 

 
Fig. A2. An example of sensor and camera-measured depths in one GI asset from the validation 
study completed by an outside consultant (for more details, please refer to Dierks 20191). 
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Table A1. List of the 14 monitored GI sites with their design features and physiographic 
features. The site type refers to if the site is a rain garden (RG) or a bioretention cell (BRC). The 
land use type refers to if the site is classified as a developed low intensity (DLI), developed 
medium intensity (DMI), or developed high intensity (DHI). 

 



 
Fig. A3. The eight Detroit rain gauges used to analyze rainfall. 
 
Table A2. Records of the field visits (deployment and maintenance) for the 14 GI devices. 

Site ID Deployment Maintenance  

S1 6/11/21 N/A 
S2 6/18/21 N/A 
S3 6/11/21 N/A 
S4 6/11/21 N/A 
S5 7/2/21 N/A 
S6 6/11/21 N/A 
S7 6/11/21 N/A 
S8 7/2/21 N/A 
S9 6/18/21 N/A 

S10 6/18/21 N/A 
S11 6/11/21 N/A 
S12 6/18/21 8/11/21 
S13 6/11/21 N/A 
S14 6/18/21 N/A 

 

  



B. GIS  

 

 GIS data pre-processing 

The following steps were taken to download and pre-process the GIS datasets used in the 
correlation analysis using ArcGIS Pro. 
 

1. Added a csv file with the spatial coordinates and decay constants of each GI location. 
2. The GI data was displayed using the Display XY Data tool. Set the X field as longitude and 

the Y field as Latitude. 
3. Reprojected the GI layer using the Project tool to GCS_WGS_1984. 
4. Downloaded the City of Detroit Boundary JSON file from 

https://data.detroitmi.gov/datasets/detroitmi::city-of-detroit-boundary/about. 
5. Converted Detroit boundary to shapefile and deleted center cutout of Hamtramck and 

Highland Park using the Edit Vertices tool. 
6. Downloaded 3m (1/9th arc second) elevation data for Wayne County, Michigan, US 

from  https://earthexplorer.usgs.gov/.2 
7. Combined the eleven elevation images into one using the Mosaic to New Raster tool. 
8. Added the USA SSURGO – Soil Hydrologic Group,3 USA NLCD Land Cover, 4 and USA 

NLCD Impervious Surface Time Series4 raster datasets from the ArcGIS Virtual Portal. 
9. Reprojected the four raster datasets using the Project Raster tool to GCS_WGS_1984. 
10. Clipped the four raster layers to Detroit boundary shapefile the Extract by Mask tool 
11. Made all four raster files have the same resolution (30 m) using the Resample tool. 
12. Used the elevation layer to create a new slope layer using the Surface Parameters tool.5 

Selected the quadratic option (which is default and recommended option for most data and 
applications), the default calculated neighborhood distance, the z unit was set to meter, and 
the output slope measurement was set for percent rise. 

13. The land cover layer contains categorical data, so we needed to change these to numerical 
values for the correlation analysis using the Reclassify tool. The “High Developed Intensity” 
value was set to 3, “Medium Developed Intensity” to 2, “Low Developed Intensity” to 1, and 
all other categories to 1 since they are most closely related to “Low Developed Intensity”. 
“Open Water” was set to NODATA since we cannot install GI there. 

14. Obtained the well data for Michigan from the State of Michigan’s Water Well Viewer,6 
Wellogic System,7 and the US Geologic Survey’s Groundwater Watch.8 Combined the three 
well datasets into one Excel file. Plotted histogram of static water level to check for outliers, 
kurtosis, and skewness to show it’s a normal distribution. The csv file was then added to 
ArcGIS Pro. The data is displayed using the Display XY Data tool. Set the X field as 
longitude and the Y field as Latitude. 

15. Reprojected the wells layer using the Project tool to GCS_WGS_1984. 
16. Interpolated groundwater levels using the Empirical Bayesian Kriging tool. The output cell 

size was set to the same size as the other raster datasets (30 m). Data transformation type was 
none and the semivariogram type was Power. Additional model parameters were 50 for the 
maximum # of points in each local model; 1 for the local model area overlap factor; and 
1,000 for the number of simulated semivariograms. The search neighborhood parameters 
used a Smooth Circular search neighborhood with a smoothing factor of 0.85 and the default 
calculated radius (21,399 m).  

https://earthexplorer.usgs.gov/


17.  Used GA Layer to Rasters to convert the geostatistical layer to a raster file for both the 
prediction and the prediction standard error. Masked it to the Detroit boundary shapefile and 
selected GCS_WGS_1984 as the projection. 

18. Used the Extract Multi Values to Points tool to extract the values from each raster layer 
(elevation, slope, HSG, groundwater, imperviousness, land use type) at the GI locations. 

19. Converted this data to an Excel file using the Table to Excel tool and loaded it into Python 
for the correlation analysis. 
 

 Table B1. Details on the GIS datasets including the year, source, type, and resolution. 
Dataset Year Source Type Resolution 

City of Detroit Boundary 2021 City of Detroit Vector N/A 
National Elevation Dataset 
(NED) 1/9 Arc Second (3m)2 

2017 USGS Raster 3 m 

USA SSURGO - Soil Hydrologic 
Group3 

2021 Esri Raster 30 m 

USA NLCD Land Cover4 2019 Esri Raster 30 m 
USA NLCD Impervious Surface4 2019 Esri Raster 30 m 
Well Records6 2021 State of Michigan CSV N/A 
Well Records7 2021 State of Michigan CSV N/A 
Well Records8 2021 US Geologic Survey CSV N/A 

 

Groundwater interpolation 

Detroit has a shallow groundwater system, with the groundwater table being one to three meters 
below the surface in some regions.9 For this reason, it is critical to include groundwater in the 
analysis. To the best of our knowledge, the only available groundwater data for the State of 
Michigan are a collection of water well records which provide the static water level (ft), or depth 
to the groundwater, for each well. Three sets of well records were found: (1) Water Well Viewer 
by the State of Michigan’s Department of Environmental Quality;6 (2) Wellogic System by the 
State of Michigan’s Department of Environment, Great Lakes and Energy (previously the 
Department of Environmental Quality); 7 and (3) Groundwater Watch by the US Geologic 
Survey.8 It is important to note that although the derived data in these files represents the best 
readily available data, they do not represent a complete database of all wells or well records in 
existence. The well records include three csv files with each well’s ID, location (latitude, 
longitude), static water level, and other data that is irrelevant for this analysis. A limitation of 
these records is that there is a single static water level reading for each well. And since 
groundwater fluctuates, the variation in groundwater is missing, creating some uncertainty.  
 
We want to use the groundwater data to see if there is a correlation between GI drawdown rates 
and the depth to groundwater. To do this, we need an estimate of groundwater depth for each GI, 
which requires the well records need to be manipulated into a usable form. The three water well 
records are combined into a single Excel file. A histogram of the static water level is plotted to 
check for outliers (Fig. B1). In addition, summary statistics are computed (Table B2). Since the 
values for kurtosis and skewness are between ± 2, this is considered acceptable to prove the data 
follows a normal univariate distribution.10 Therefore, the full dataset is used (no outliers 
removed), and no data transformations are used. The dataset is added to ArcGIS Pro using the 



Excel to Table tool, displayed using the Display XY Data tool, and then reprojected to “GCS 
WGS 1984”. The next step is to interpolate the static water level across Detroit. 
 
Table B2. Groundwater well record summary statistics. 
Total Wells 1670 
Mean (ft) 34.6 
St. Dev. (ft) 22.7 
Max (ft) 120.0 
Min (ft) 1.0 
Kurtosis 0.93 
Skewness 0.96 

 

 
Fig. B1. Histogram of the static water level (ft) in the Detroit region water wells. 
 
Kriging is an accepted method of estimating groundwater at sites where the water level data are 
available but where there may be insufficient additional data necessary for groundwater flow 
modeling.11 Traditional kriging methods estimate a variogram that is considered the true 
variogram of the observed data without explicitly considering uncertainty. Recently, a new form 
of kriging, Empirical Bayesian Kriging (EBK), has been shown to perform better than other 
types of kriging methods.12 It has been successfully used to evaluate inter-annual water-table 
evolution in Mexico13 and to quantify uncertainty in groundwater modeling.14 The fundamental 
advantage of EBK over classical kriging methods is that it creates a spectrum of variograms 
which account for the uncertainty introduced by estimating a variogram in the first place.13 
Therefore, EBK is used to interpolate groundwater following the methodology of Li et al. 
(2020).13 
 
In ArcGIS Pro, the EBK tool is selected with the groundwater point data as the input feature. The 
Z value field was set to groundwater depth. The output cell size is set to the same size as the 
other raster datasets (30 m). The data transformation type is set to “None” because the data is 
normally distributed. There are three semivariogram options when the data transformation is 
“None”: power, linear, and thin plate spline. Power is selected because it is relatively fast, 
flexible, and balances performance and accuracy. The search neighborhood parameters used a 
“Smooth Circular” search neighborhood with a smoothing factor of 0.85 and the default 
calculated radius (21,399 m).13 ArcGIS Pro’s leave-one-out cross-validation is used to find the 
remaining model parameters: maximum number of points in each local model, the local model 
area overlap factor, and the number of simulated semivariograms. Following the methodology of 



Li et al. (2020),13 we calculate the mean error (ME), root mean square error (RMSE), average 
standard error (ASE), mean standardized error (MSE), and root mean square standardized error 
(RMSSE) for each subset of parameters. The different errors from cross-validation ware 
analyzed with the rules in Table B3 to assess the variability of predictions and evaluate the 
performance (under or over-estimation) of the EBK model.  
 

Table B3. Conditions to evaluate the performance of the EBK model.13 
Check if the following 

hold: 

The prediction 

variability is:  

ASE ≈RMSE and RMSSE 
≈ 1 

 Correctly assessed 

ASE > RMSE and RMSSE 
< 1 

Overestimated 

ASE < RMSE and RMSSE 
> 1 

Underestimated 

 
Cross-validation results found the optimal parameters to be: 50 for the maximum number of 
points in each local model; 1 for the local model area overlap factor; and 1,000 for the number of 
simulated semivariograms. The interpolation errors suggest the EBK model performs correctly 
and does not under or overestimate groundwater (Table B4). As a secondary check, Li et al. 
reported an RMSE ≈ 𝐴𝑆𝐸 ≈ 13.1614.43, and our values are close (16.4-16.7). 13  Fig. B2 shows 
the predicted versus true groundwater depths. 
  
Table B4. ArcGIS Pro cross-validation report for the optimal parameter values: 50 for the 
maximum number of points in each local model; 1 for the local model area overlap factor; and 
1,000 for the number of simulated semivariograms. 
Inside 90% Interval 91.1 
Inside 95% Interval 94.4 
Mean 0.230 
RMSE  16.7 
MSE  0.00979 
RMSSE  0.998 
ASE  16.4 

 
The EBK model with the optimal parameters is used to interpolate groundwater across Detroit. 
The GA Layer to Rasters tool is used to convert the geostatistical layer to a raster file for both the 
prediction and the prediction standard error. The output is set to be masked to the Detroit 
boundary shapefile and projected to “GCS WGS 1984”. The interpolated groundwater along 
with the groundwater wells are shown in Fig. B3a. The interpolated groundwater map aligns with 
the literature. Teimoori et al. found that the depth to groundwater is deepest in the northwest and 
gradually decreases as you move southeast.9 The standard error of prediction plot shows the 
errors are higher in areas where well data does not exist (Fig. B3b). 



 
Fig. B2. The predicted versus true groundwater depth from the EBK model. 
 
The final steps are to prepare the data for the correlation analysis. The Extract Multi Values to 

Points tool is used to extract the values from the groundwater raster layer at the GI locations and 
then it is converted to an Excel file using the Table to Excel tool. Then the groundwater data is 
also converted into an Excel file using the Table to Excel tool. Finally, these files are loaded into 
Python. 
 

 
Fig. B3. (a) The groundwater wells and interpolated depth to groundwater (ft) for Detroit, 
Michigan, US. (b) The standard error of prediction of the interpolated depth to groundwater. 

(a) 

(b) 
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