Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2023

Supplementary material

For

Degradation of ciprofloxacin in UV/NH₂Cl process: kinetics, mechanism, pathways and DBPs formation

Ruihua Zhang^{a1}, Cheng Peng^{a1}, Qiongfang Wang^{a*}, Xinyu Zou^a, Qiming Zhao^a, Jiajun Wang^a,

Jiayu Zhang^a, Lei Dong^{b, c}, Xin Zhang^c, Naiyun Gao^b

^a College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science,

Shanghai 201600, China

^b State Key Laboratory of Pollution Control Reuse, Tongji University, Shanghai 200092, China

^c Shanghai Municipal Engineering Design Institute (Group) Co., LTD, Shanghai 200092, China

¹ Co-first authors

Tables

Table S1. Trihalomethanes and haloacetonitriles analysis - gas chromatograph operating conditions

Parameter	Description
Injector Temperature	Splitless 200°C
	15 sec purge activation time
Detector Temperature	300°C
Temperature Program	35°C for 9.0 min
	10°C/min temperature ramp to 40°C
	40°C for 3.0 min
	15°C/min temperature ramp to 150°C
	150°C for 1.0 min
Carrier Gas	Helium
Flow Rate	24.8 cm/sec at 150°C

 $Table \ S2. \ Haloacetic \ acids \ analysis-gas \ chromatograph \ operating \ conditions$

Parameter	Description
Injector Temperature	Splitless 210°C
	15 sec purge activation time
Detector Temperature	300°C
Temperature Program	40°C for 2.0 min
	1°C/min temperature ramp to 65°C
	65°C for 2.0 min
	10°C/min temperature ramp to 90°C
	150°C for 0 min
	30°C/min temperature ramp to 210°C
	210°C for 2.0 min
Carrier Gas	Helium
Flow Rate	24.8 cm/sec at 150°C

Table S3. Comparison of degradation efficiency between different systems

Degradation system	Target pollution	Initial concentration	UV lamp power	Oxidant concentration	Degradati on time	Reference
UV/Cl ₂	Metoprolol	0.1 mg/L	1.1 mW/cm ²	1.0 mM	120 min	(Nam et al. 2015)
UV/H ₂ O ₂	Cefixime	9 mg/L	36 W	0.85 mM	180 min	(Belghadr et al. 2014)
UV/PS	Thiamphenicol	0.14 mg/L	20 W	1.0 mM	60 min	(Wang et al. 2017)
UV/NH ₂ Cl	Ciprofloxacin	5 mg/L	65 uW/cm ²	0.5 mM	90 min	/

Reference

- Belghadr, Issa, Ghodratollah Shams Khorramabadi, Hatam Godini, and Mohammad Almasian. 2014. 'The removal of the cefixime antibiotic from aqueous solution using an advanced oxidation process (UV/H2O2)', *Desalination and Water Treatment*, 55: 1068-75.
- [2] Nam, S. W., Y. Yoon, D. J. Choi, and K. D. Zoh. 2015. 'Degradation characteristics of metoprolol during UV/chlorination reaction and a factorial design optimization', *J Hazard Mater*, 285: 453-63.
- [3] Wang, Feige, Wenjing Wang, Shoujun Yuan, Wei Wang, and Zhen-Hu Hu. 2017. 'Comparison of UV/H2O2 and UV/PS processes for the degradation of thiamphenicol in aqueous solution', *Journal of Photochemistry and Photobiology A: Chemistry*, 348: 79-88.

	1 0		, 1	1	
	pH				
Before reaction	3.0	5.0	7.0	9.0	11.0
After reaction (Parallel experiment I)	3.12	5.89	6.26	6.85	8.76
After reaction (Parallel experiment II)	3.25	5.74	6.13	7.23	9.12

Table S4. pH change of UV/NH₂Cl system in pH experiments

Compound	Retention Time(min)	m/z	Formula	Possible chemical structure
CIP	3.59	311.13	C ₁₇ H ₁₈ FN ₃ O ₃	
А	3.18	305.12	C ₁₅ H ₁₆ FN ₃ O ₃	
В	6.98	262.08	$\mathrm{C}_{13}\mathrm{H}_{11}\mathrm{FN}_{2}\mathrm{O}_{3}$	
С	1.61	248.10	$C_{13}H_{13}FN_2O_2$	
D	1.61	204.11	$C_{12}H_{13}FN_2$	H ₂ N F

Table S5. Degradation products of CIP during the UV/NH₂Cl process

Е	3.48	146.08	$C_9H_{12}N_2$	H ₂ N H
F	5.57	361.11	C ₁₇ H ₁₆ FN ₃ O ₅	
G	3.79	244.06	C ₁₃ H ₉ FN ₂ O ₂	
Н	5.45	291.10	C ₁₄ H ₁₄ FN ₃ O ₃	
Ι	6.98	265.09	C ₁₂ H ₁₂ FN ₃ O ₃	
J	5.98	222.04	C ₁₀ H ₇ FN ₂ O ₃	
K	4.42	208.06	$C_{10}H_9FN_2O_2$	

Figures

Fig. S2 Effect of (a) initial NH₂Cl concentration, (b) initial pH, of different concentrations on the degradation of CIP by UV/NH₂Cl. Conditions: [CIP] = 19.58 μ M = 5mg/L, [NH₂Cl] = 0.25 ~ 2 mM, pH = 5.0 ~ 10.0, [NOM]=0 ~ 4 mg/L, [HCO₃⁻]=0 ~ 4 mM, [CO₃²⁻]=0 ~ 4 mM, [Cl⁻]=0 ~ 4 mM, [NO₃⁻]=0 ~ 4 mM, [TBA]=0 ~ 50 mM, Is = 65 μ W/cm².

Fig. S3 Effect of (a) Cl⁻, (b) NO₃⁻, (c) HCO₃⁻, (d) CO₃²⁻, (e) NOM, (f) TBA of different concentrations on the degradation of CIP by UV/NH₂Cl. Conditions: [CIP] = 19.58 μ M = 5mg/L, [NH₂Cl] = 0.25 ~ 2 mM, pH = 5.0 ~ 10.0, [NOM]=0 ~ 4 mg/L, [HCO₃⁻]=0 ~ 4 mM, [CO₃²⁻]=0 ~ 4 mM, [CO₃²⁻]=0 ~ 4 mM, [CO₃⁻]=0 ~ 4 mM, [TBA]=0 ~ 50 mM, Is = 65 μ W/cm².

Fig. S3. The mass spectrograms of intermediate products of A to M (a-m).