Supporting Information

Deploying a copper catalyst for efficient degradation of commercial and industrial dyes in a two-stage wastewater treatment under practical conditions

Afsar Ali^a, Badri Vishal Meena^b, Naseer Ahmed Shah^c, Tannu^d, Chinmay Ghoroi^{b*}, Arnab Dutta^{c,d*}
^aChemistry Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
^bChemical Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
^cChemistry Department, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
^dInterdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India

Corresponding author: arnab.dutta@iitb.ac.in

Table	of	Contents
-------	----	----------

Entry	Page No.
Experimental Section	5-7
Figure S1. Optical spectra for ligand L1 and complex Cu1 in DMF	8
Figure S2. Comparative FTIR spectra for L1 and Cu1	8
Figure S3. EPR spectrum for Cu1 in DMF	9
Figure S4. Cyclic Voltammogram (CV) for C1 complex	9
Figure S5. A chronocoulometric experiment of C1 complex at 0.75 V (vs. $FeCp_2^{+/0}$)	10
Figure S6. The optical spectra for Rh-6G dye degradation at pH 3.0 and 7.0	11
Figure S7. The optical spectra for Rh-6G dye degradation at pH 11.0 and at different	11
concentrations of C1 complex at pH 7.0	11
Figure S8. Optical spectra for Rh-6G at pH 3.0 and 7.0 after 8 hrs	12
Figure S9. Optical spectra for Rh-6G at pH 11.0 and percentage degradation at different	12
pH	12
Figure S10. Mass data for Rh-6G before treatment by C1/H ₂ O ₂	13
Figure S11. Mass data for Rh-6G after treatment by C1/H ₂ O ₂	13
Figure S12. Optical spectra for AB-10B degradation and percentage degradation at pH-	14
7.0	14
Figure S13. Optical spectra for BBG degradation and percentage degradation at pH-7.0	14
Figure S14. Optical spectra for BG degradation and percentage degradation at pH-7.0	15
Figure S15. Optical spectra for CR degradation and percentage degradation at pH-7.0	15
Figure S16. Optical spectra for DB-71 degradation and percentage degradation at pH-7.0	16
Figure S17. Optical spectra for FS degradation and percentage degradation at pH-7.0	16
Figure S18. Optical spectra for IC degradation and percentage degradation at pH-7.0	17
Figure S19. Optical spectra for MBH degradation and percentage degradation at pH-7.0	17
Figure S20. Optical spectra for MO degradation and percentage degradation at pH-7.0	18

Figure S21. Optical spectra for MR degradation and percentage degradation at pH-7.0	18
Figure S22. Optical spectra for RB-5 degradation and percentage degradation at pH-7.0	19
Figure S23. Optical spectra for DE-1 degradation and percentage degradation at pH-7.0	19
Figure S24. Optical spectra for DE-2 degradation and percentage degradation at pH-7.0	20
Figure S25. Optical spectra for DE-3 degradation and percentage degradation at pH-7.0	20
Figure S26. Optical spectra for DE-4 degradation and percentage degradation at pH 7.0	21
Figure S27. Conc. of CO ₂ and CO formation by degradation of Rh-6G	21
Figure S28. Conc. of CO ₂ and CO formation by degradation of AB-10B	22
Figure S29. Conc. of CO_2 and CO formation by degradation of BBG	22
Figure S30. Conc. of CO_2 and CO formation by degradation of BG	23
Figure S31. Conc. of CO ₂ and CO formation by degradation of CR	23
Figure S32. Conc. of CO ₂ and CO formation by degradation of DB-71	24
Figure S33. Conc. of CO_2 and CO formation by degradation of FS	24
Figure S34. Conc. of CO ₂ and CO formation by degradation of IC	25
Figure S35. Conc. of CO_2 and CO formation by degradation of MBH	25
Figure S36. Conc. of CO_2 and CO formation by degradation of MO	26
Figure S37. Conc. of CO ₂ and CO formation by degradation of MR	26
Figure S38. Conc. of CO ₂ and CO formation by degradation of RB-5	27
Figure S39. Conc. of CO ₂ and CO formation by degradation of DE-1	27
Figure S40. Conc. of CO ₂ and CO formation by degradation of DE-2	28
Figure S41. Conc. of CO_2 and CO formation by degradation of DE-3	28
Figure S42. Conc. of CO_2 and CO formation by degradation of DE-4	29
Figure S43. The change in COD before and after chemical dye treatment process	29
Figure S44. Optical spectra for C1 complex in DMF followed by addition of H_2O_2 and	30
H_2O	50
Figure S45. Optical spectra for C1 complex before and after the dye treatment	30
Figure S46. XPS data for C1 before and after the dye treatment	31

Figure S47. Conc. of CO ₂ and CO formation by degradation of DE-1 and Rh-6G in the presence of CuCl ₂ /H ₂ O ₂ and IPA	31
F	
Table S1. Percentage degradation of standard dyes and industrial effluent in presence of	22
different analysts (H ₂ O ₂ , CuCl ₂ /H ₂ O ₂ , and C1/H ₂ O ₂) at room temperature and pH 7.0	32
Table S2. Change in water quality parameters before and after the two-stage dye	33
treatment	
References	34

EXPERIMENTAL SECTION

Materials and Methods:

Acetone (HPLC and Spectroscopy), N,N-Dimethylformamide (HPLC and Spectroscopy), Diacetylmonoxime (AR), and Diethyl ether (AR) were purchased from SD Fine chemicals Ltd. India. Methanol (HPLC and gradient), Chloroform (AR/ACS), Hydrochloric acid (AR/ACS), Sodium Hydroxide (AR), and Sodium sulfate, anhydrous (AR/ACS) were purchased from Finar Chemicals Pvt. Ltd. 1,2 Phenylenediamine (AR), diacetyl monoxime (AR), CuCl₂.2H₂O (AR), d₆-DMSO (NMR solvent), Rhodamine 6G (Rh-6G), Reactive Black-5 (RB-5), Direct blue 71(DB-71) were purchased Sigma-Aldrich India and all other commercial dyes except Rh-6G, RB-5, DB-71 were procured from TCI chemicals (India) Pvt. Ltd. Glassware was oven dried before use. Nuclear Magnetic Resonance Spectra (NMR) were recorded at 300K temperature using a Bruker Avance III 500 MHz Ascent FT spectrometer with working frequencies of 500 MHz for ¹H NMR. NMR signals are reported in ppm with solutions in $(CD_3)_2SO$ (δ = 2.50 ppm) solvent. UV-Vis spectra were recorded on a JASCO V-750 spectrophotometers using 1 cm path length in 1 mL Kozima make quartz cuvette. ATR-FTIR spectra of pure solid samples were recorded on PerkinElmer (Spectrum-Two) spectrometer. ESI Mass of the complexes was recorded with a synapt G2S ESI-QToF LCMS (Waters) in positive mode. Cyclic voltammetry (CV) experiments were carried out at room temperature using Metrohm Autolab PGSTAT 101 potentiostat. CO₂ gas peaks were recorded in CIC Dhruva Gas chromatography. A standard three electrode system under N₂ atmosphere was used with a 1 mm glassy carbon disc as a working electrode, Ag/AgCl (0.1 M AgNO₃) (in DMF) or Ag/AgCl (saturated KCl) (in aqueous solution) as a reference electrode connected by vycor tip and a platinum wire as a counter electrode. All potentials are reported versus $Fe(C_5H_5)_2^{+/0}$ (Ferrocene, $FeCp_2^{+/0}$) (in DMF) or $Fe(CN)_6^{3-/4-}$ couple ($E_{Fe(CN)6/3-/4-} = +0.360$ V vs. SHE) (in aqueous solution), added as an internal standard at the end of each measurement. Spectroelectrochemistry was performed at room temperature in DMF solution using Avantes Starline Avaspec-2048 spectrophotometer with 20.00 ms integration time and near 100 average scans. 2 mL of sample was placed in a 3.5 mL quartz cuvette (1 cm path length) placed in an external sample holder connected to the light source and detector via optical fibres. The system was further connected to Metrohm Autolab PGSTAT 101 using a 3 mm glassy carbon rod as working electrode, Pt wire as a counter electrode, and Ag/AgCl (in saturated KCl) as a reference electrode with continuous N₂ pressure.

Preparation of 1,2 phenylenediimine-oxime ligand (L1):

Methanolic solution (10 ml) of 2 eq. (202.22 mg, 2 mmol) diacetylmonoxime was added with 1 eq. (108.14 mg, 1 mmol) of 1,2phenylenediamine. A catalytic amount (10 μ L) of hydrochloric acid was added to the reaction mixture and it was refluxed for 8 hours at 70 °C. The yellow coloured solid product was obtained as a final product, which was collected after removal of the solvent under reduced

pressure. (Yield 80 %).¹H-NMR (500 MHz, DMSO-d₆) (δ /ppm): 11.30 (s, 2H), 8.00 (dd, 2H), 7.75 (dd, 2H), 1.97 (s, 6H), 2.70 (s, 6H). UV-vis (in DMF) (λ_{max} in nm, ϵ in parentheses M⁻¹cm⁻¹): 240 (35000), 310 (9500), 325 (shoulder, 8000). HRMS (G2S-ESI-QToF) m/z⁺ calculated for (M+H⁺) [C₁₄H₁₉N₄O₂]: calculated 275.14, experimentally observed 275.0368.

Preparation of 1,2 phenylenediimine-oxime copper complex (C1):

One equivalent (170.48 mg, 1 mmol) blue coloured solution of CuCl₂.2H₂O in methanol was added dropwise to a methanolic solution of one equivalent (274.31 mg, 1 mmol) of yellow coloured L1 ligand. The solution gradually turned into dark brown colour. This solution was stirred at room temperature for 1 hour followed by 2-hour reflux. The dark brown coloured solid product was obtained as a final product

following the removal of the solvent under reduced pressure and drying the product under a high vacuum overnight. (Yield 65%) UV-vis (in DMF) (λ_{max} in nm, ϵ in parentheses M⁻¹cm⁻¹): 240 (25000), 275 (15000), 280 (shoulder, 11000), 320 (5000), 430 (shoulder, 4800), 460 (5000), 490 (shoulder, 4800), 850 (broad, 110). HRMS (G2S-ESI-QToF) m/z⁺ calculated for (M+H⁺) [C₁₄H₁₇N₄O₂Cu₁]: calculated 336.06, experimentally observed 336.3152.

Two-stage Catalytic setup for decolorization of commercial dyes and industrial effluents:

A two-stage catalytic setup was devised here for implementing an efficient dye-degradation strategy. In the first step, a set of physical (flocculation) and chemical adsorption (coagulation) was combined for an effective separation of organic dyes from industrial effluent sample solutions. Here, a mixture of FeSO₄ and CaO (1.0 g each) were utilized as adsorbates for cleansing of both dark-colored standard and industrial dyes (1.0-liter volume size) with approximately 30% adsorption efficiency. This initial physical treatment specifically precipitates out (dark brown colored) the insoluble and sparingly soluble dye molecule fragments present in the effluents. In stage two, the resultant clear brown solution was filtered (volume 1.0-liter) and treated with the synthetic copper complex C1 (4.0 mg) in the presence of the stoichiometric amount of H_2O_2 (1.0 mL). This concoction of the C1/ H_2O_2 mix triggers an advanced oxidation process (AOP) that primarily proceeds as a catalytic reaction. This H_2O_2 -induced and copper complex-driven catalysis extensively degrades the water-soluble organic dye molecules to generate CO₂ as an exclusive side product, while the solution slowly turned light yellow to colorless over time. The continuous production of CO₂ during this AOP step was evident from the generation of the copious amount of gas bubbles and frothing of the solution. This hypothesis was further confirmed by the signature peak of CO₂ in gas chromatography.

This two-step setup, consisting of physical and chemical treatment modules, was utilized for screening of an array of twelve commercially available dyes along with four as-received industrial dyes (acquired from textile industries and dye industries) following the procedure mentioned in the above section. All dye degradation experiments were carried out using copper complex C1 and H_2O_2 in stoichiometric amounts for an incubation period of 0.25-8.0 hours. The variation of the incubation period is primarily dependent on the concentration of the dye molecules in the sample.

The change in the optical spectra of the dye solution following the treatment of C1 and H_2O_2 mix was followed via a JASCO-V750 UV-Visible spectrophotometer at room temperature. The as-prepared reaction mixtures containing dye molecules and C1 / H_2O_2 mix were allowed to react at ambient temperature under air with a constant stirring (*500 rpm*). The percentage degradation efficiency was calculated by using initial and final absorbance with respect to the time and control experiments (in the presence of only H_2O_2 and $CuCl_2/H_2O_2$) process. After treatment, the complex C1 was removed by means of filtration and centrifugation. The percentage degradation efficiency has been calculated by using the following formula:

Percentage of dye degradation =
$$\left[\frac{Initial \ conc. - Final \ conc.}{Intial \ conc.}\right] \times 100$$

The initial concentration (before treatment) has been shown at zero time and final concentration (after treatment) at a certain time.

Methodology for GC (Gas Chromatography):

The amount of CO₂ evolved during the process (following dye oxidation) has been detected by using a Dhruva CIC gas chromatography (GC) instrument equipped with TCD detector having a 5Å molecular sieve column while deploying Ar as carrier gas. In the beginning, we prepared 1.0 mM dyes solution in distilled water. During the experimental setup, we took 4.0 ml of dye solutions in a 20.0 ml airtight vial along with a small magnetic bead. Copper complex and H_2O_2 were added as catalyst and oxidizing partner, respectively. After that, we stirred the mixture solution at 500 rpm for all the samples under the nitrogen saturated condition. The headspace gas has been collected after one hour intervals with an Agilent manual syringe (capacity 1.0 ml) till 8 hours of complete degradation study. The control experiments were also performed under analogous conditions to measure the background CO₂. During the gas detection, only CO₂ was detected as major product along with a small amount of CO. The absence of any significant mass spectral signal of the precursor dyes following the degradation study revealed the complete degradation of dyes during experiments.

Figure S1. Comparative optical spectra recorded for ligand L1 (black trace) and complex C1 (red trace) in DMF exhibiting π - π * and LMCT transitions at room temperature. The inset exhibits d–d transition recorded for C1 under the same condition. Reprinted with permission from¹. Copyright 2021 American Chemical Society.

Figure S2. Comparative FTIR spectra in the 4000-1500 cm⁻¹ region for L1 (black trace) and C1 (red trace) measured with powder sample. The 3700-3000 cm⁻¹ region exhibited a broad feature in C1 compared to sharp features observed in L1. Reprinted with permission from¹. Copyright 2021 American Chemical Society.

Figure S3. The axial EPR spectrum recorded for C1 in DMF at 77 K (black trace) displaying the g_{\parallel} , g_{\perp} , and A_{\parallel} values. Reprinted with permission from¹. Copyright 2021 American Chemical Society.

Figure S4. Cyclic Voltammogram (CV) of 0.5 mM C1 recorded in DMF with 1 mm diameter glassy carbon disc working electrode, Pt wire counter electrode, and Ag/AgC1 (in 0.1 M AgNO₃) reference electrode. This CV is recorded in the presence of 0.1 M nBu₄NBF₄ electrolyte under 1 atm N₂ atmosphere with 0.2 V/s scan rate. The horizontal arrow denotes the initial scan direction. Reprinted with permission from¹. Copyright 2021 American Chemical Society.

Figure S5. The changes observed in the LMCT bands of C1 in DMF solution during spectroelectrochemistry experiment before (black trace) and after (red trace) the oxidation process. A chronocoulometric experiment was performed with a sample where the potential of the system was held at 0.75 V (vs. $FeCp_2^{+/0}$) as indicated by the horizontal red dashed line in the inset. The horizontal black arrows display the change in the LMCT bands. This data was recorded with 1 mm diameter glassy carbon rod working electrode, Pt wire counter electrode, and Ag/AgCl (in 0.1 M AgNO₃) reference electrode in the presence of 0.1 M nBu₄NBF₄ electrolyte under N₂ atmosphere. Reprinted with permission from¹. Copyright 2021 American Chemical Society.

Optical and percentage degradation study for standard dye and dye effluents:

Figure S6. (A) The Optical spectral study recorded for degradation of Rh-6G (20 μ M) in pH 3.0 aqueous condition (B) in pH 7.0 aqueous condition, treated with complex C1 (5 μ M) and H₂O₂ (12.5 μ M) for 8 hrs incubation. The optical spectra with black trace exhibited for Rh-6G before treatment, the degradation, after 2 hrs (red trace), 4 hrs (blue trace), 6 hrs (green trace) and 8 hrs (violet trace) have been recorded with complex C1/H₂O₂ and same trace in case of pH 7.0.

Figure S7. (A) The Optical spectral study recorded for degradation of Rh-6G (20 μ M) in pH 11.0 aqueous condition, treated with complex C1 (5 μ M) and H₂O₂ (12.5 μ M) for 8 hrs incubation. The optical spectra with black trace exhibited for Rh-6G before treatment and the degradation after 2 hrs (red trace), 4 hrs (blue trace), 6 hrs (green trace) and 8 hrs (violet trace) have been recorded with complex C1/H₂O₂. (B) The Optical spectral study recorded for degradation of Rh-6G (20 μ M) in pH 7.0 aqueous condition at different concentrations of complex C1/H₂O₂ for 8 hrs incubation. The optical spectra with black trace exhibited for Rh-6G before treatment and the degradation after treatment with 1 μ M complex C1/H₂O₂ (H₂O₂, 2.5 μ M) (red trace), 2 μ M complex C1/H₂O₂ (H₂O₂, 5 μ M) (blue trace), 3 μ M complex C1/H₂O₂ (H₂O₂, 7.5 μ M) (green trace) and 5 μ M complex C1/H₂O₂ (H₂O₂, 12.5 μ M) (violet trace) after 8 hrs incubation.

Figure S8. (B) The Optical spectral study recorded for degradation of Rh-6G (20 μ M) in pH 3.0 aqueous condition (B) in pH 7.0 aqueous condition, treated with CuCl₂ (5 μ M)/H₂O₂ (12.5 μ M) and complex C1 (5 μ M)/H₂O₂ (12.5 μ M) for 8 hrs incubation. The optical spectra with black trace exhibited for Rh-6G before treatment and the degradation after treatment with CuCl₂/H₂O₂ (red trace) and treatment with complex C1/H₂O₂ (blue trace) after 8 hrs incubation.

Figure S9. (A) The Optical spectral study recorded for degradation of Rh-6G (20 μ M) in pH 11.0 aqueous condition, which has treated with CuCl₂ (5 μ M)/H₂O₂ (12.5 μ M) and complex C1 (5 μ M)/H₂O₂ for 8 hrs incubation. The optical spectra with black trace exhibited for Rh-6G before treatment and the degradation after treated with CuCl₂/H₂O₂ (red trace) and treated with complex C1/H₂O₂ (blue trace) after 8 hrs incubation (B) The percentage degradation recorded for Rh-6G (20 μ M) in different pH aqueous condition, which has treated with complex C1 (5 μ M)/H₂O₂ (12.5 μ M) for 8 hrs incubation. The optical spectra with black trace exhibited for Rh-6G (20 μ M) in different pH aqueous condition, which has treated with complex C1 (5 μ M)/H₂O₂ (12.5 μ M) for 8 hrs incubation. The optical spectra with black trace exhibited for Rh-6G treated with H₂O₂ only, red trace treated with CuCl₂/H₂O₂, blue trace treated with complex C1/H₂O₂ at pH-3, green trace treated with complex C1/H₂O₂ at pH-7 and violet trace treated with complex C1/H₂O₂ at pH-11.

RD6	N_MIX_2	31017_0	76 936 ((5.868)						IIT, G	N							06-De	c-201712 1: TOF M	2:37:39 //S ES+
100-	1	_		443.	2344															1.51e6
-																				
.																				
· ·																				
-																				
- °																				
·																				
· ·					444.2378															
·																				
				1																
0-	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	m/z

Figure S10. Mass spectra recorded for standard Rh-6G before treatment, which shown m/z = 443.23.

Figure S11. Mass spectra recorded for standard Rh-6G after 30 minutes of treatment with complex $C1/H_2O_2$. However, mass spectral peak related to Rh-6G was not observed, which indicated that Rh-6G is defragmented following the chemical treatment.

Figure S12. (A) Optical spectra recorded for AB-10B (Amido Black 10B) in presence of H_2O_2 , $CuCl_2/H_2O_2$ and $C1/H_2O_2$ for 80 minutes. Black trace for AB-10B before treatment, red trace after 20 min. in presence of H_2O_2 , blue trace after 20 min. in presence of $CuCl_2/H_2O_2$, green trace after 20 min. in presence of $C1/H_2O_2$. violet trace after 40 min. in presence of H_2O_2 , light orange trace after 40 min. in presence of $CuCl_2/H_2O_2$, purple trace after 40 min. in presence of $CuCl_2/H_2O_2$, burgle trace after 40 min. in presence of $C1/H_2O_2$, purple trace after 80 min. in presence of H_2O_2 , light green trace after 80 min. in presence of $CuCl_2/H_2O_2$, and orange trace after 80 min. in presence of $C1/H_2O_2$ and $C1/H_2O_2$ (B) The percentage degradation of AB-10B in presence of H_2O_2 , $CuCl_2/H_2O_2$ and $C1/H_2O_2$ after 80 min., which shown better degradation efficiency in $C1/H_2O_2$.

Figure S13. (A) Optical spectra recorded for BBG (Brilliant blue G) in presence of H_2O_2 , $CuCl_2/H_2O_2$ and $C1/H_2O_2$ for 6 hrs. incubation. Black trace for BBG before treatment, red trace after 1 hr in presence of H_2O_2 , blue trace after 1 hr in presence of $CuCl_2/H_2O_2$, green trace after 1 hr. in presence of $C1/H_2O_2$, violet trace after 2 hrs in presence of H_2O_2 , light orange trace after 2 hrs in presence of $CuCl_2/H_2O_2$, sky blue trace after 2 hrs in presence of $C1/H_2O_2$, purple trace after 4 hrs in presence of H_2O_2 , light green trace after 4 hrs in presence of $CuCl_2/H_2O_2$, orange trace after 4 hrs in presence of $C1/H_2O_2$, light blue after 8 hrs in presence of H_2O_2 , light green trace after 8 hrs in presence of $CuCl_2/H_2O_2$, grey trace after 8 hrs in presence of $C1//H_2O_2$ (B) The percentage degradation of BBG in presence of H_2O_2 , $CuCl_2/H_2O_2$ and $C1/H_2O_2$ after 6 hrs. incubation.

Figure S14. (A) Optical spectra recorded for BG (Brilliant green) in presence of H_2O_2 , $CuCl_2/H_2O_2$ and $C1/H_2O_2$ for 4 hrs. Black trace for BG before treatment, red trace after 1 hr in presence of H_2O_2 , blue trace after 1 hr in presence of $CuCl_2/H_2O_2$, green trace after 1 hr. in presence of $C1/H_2O_2$, violet trace after 2 hrs in presence of H_2O_2 , light orange trace after 2 hrs in presence of $CuCl_2/H_2O_2$, purple trace after 4 hrs in presence of H_2O_2 , light green trace after 4 hrs in presence of $CuCl_2/H_2O_2$, orange trace after 4 hrs in presence of $C1/H_2O_2$. (B) The percentage degradation of BG in presence of H_2O_2 , $CuCl_2/H_2O_2$ and $C1/H_2O_2$ after 4 hrs.

Figure S15. (A) Optical spectra recorded for CR (Carmine) in presence of H_2O_2 , $CuCl_2/H_2O_2$ and $C1/H_2O_2$ for 60 min. Black trace for CR before treatment, red trace after 20 min. in presence of H_2O_2 , blue trace after 20 min. in presence of $CuCl_2/H_2O_2$, green trace after 20 min. in presence of $C1/H_2O_2$, violet trace after 40 min. in presence of H_2O_2 , light orange trace after 40 min. in presence of H_2O_2 , light orange trace after 60 min. in presence of H_2O_2 , light green trace after 60 min. in presence of $C1/H_2O_2$, orange trace after 60 min. in presence of $C1/H_2O_2$. (B) The percentage degradation of CR in presence of H_2O_2 , $CuCl_2/H_2O_2$ and $C1/H_2O_2$ after 1 hr.

Figure S16. (A) Optical spectra recorded for DB-71 (Direct blue-71) in presence of H_2O_2 , $CuCl_2/H_2O_2$ and $C1/H_2O_2$ for 60 min. Black trace for DB-71 before treatment, red trace after 30 min. in presence of H_2O_2 , blue trace after 30 min. in presence of $CuCl_2/H_2O_2$, green trace after 30 min. in presence of $C1/H_2O_2$, violet trace after 60 min. in presence of H_2O_2 , light orange trace after 60 min. in presence of $CuCl_2/H_2O_2$, green trace after 60 min. in presence of $CuCl_2/H_2O_2$, sky blue trace after 60 min. in presence of $C1/H_2O_2$. (B) The percentage degradation of DB-71 in presence of H_2O_2 , $CuCl_2/H_2O_2$ and $C1/H_2O_2$ after 1 hr.

Figure S17. (A) Optical spectra recorded for FS (Fluorescein) in presence of H_2O_2 , $CuCl_2/H_2O_2$ and $C1/H_2O_2$ for 60 min. Black trace for FS before treatment, red trace after 1 hr in presence of H_2O_2 , blue trace after 1 hr min. in presence of $CuCl_2/H_2O_2$, green trace after 1 hr in presence of $C1/H_2O_2$. (B) The percentage degradation of FS in presence of H_2O_2 , $CuCl_2/H_2O_2$ and $C1/H_2O_2$ after 1 hr.

Figure S18. (A) Optical spectra recorded for IC (Indigo Carmine) in presence of H_2O_2 , $CuCl_2/H_2O_2$ and $C1/H_2O_2$ for 30 min. Black trace for IC before treatment, red trace after 30 min. in presence of H_2O_2 , blue trace after 30 min. in presence of $CuCl_2/H_2O_2$, green trace after 30 min. in presence of $C1/H_2O_2$. (B) The percentage degradation of IC in presence of H_2O_2 , $CuCl_2/H_2O_2$ and $C1/H_2O_2$ after 30 min.

Figure S19. (A) Optical spectra recorded for MBH in presence of H_2O_2 , $CuCl_2/H_2O_2$ and $C1/H_2O_2$ for 8 hrs. Black trace for MBH before treatment, red trace after 1 hr in presence of H_2O_2 , blue trace after 1 hr in presence of $CuCl_2/H_2O_2$, green trace after 1 hr. in presence of $C1/H_2O_2$, violet trace after 2 hrs in presence of H_2O_2 , light orange trace after 2 hrs in presence of $CuCl_2/H_2O_2$, sky blue trace after 2 hrs in presence of $C1/H_2O_2$, orange trace after 4 hrs in presence of H_2O_2 , light green trace after 4 hrs in presence of $C1/H_2O_2$, light green trace after 4 hrs in presence of $C1/H_2O_2$, light green trace after 8 hrs in presence of H_2O_2 , light green trace after 8 hrs in presence of $C1/H_2O_2$, grey trace after 8 hrs in presence of $C1/H_2O_2$, grey trace after 8 hrs in presence of $C1/H_2O_2$, grey trace after 8 hrs in presence of $C1/H_2O_2$, GB) The percentage degradation of MBH in presence of H_2O_2 , $CuCl_2/H_2O_2$ and $C1/H_2O_2$ after 8 hrs.

Figure S20. (A) Optical spectra recorded for MO (Methyl Orange) in presence of H_2O_2 , $CuCl_2/H_2O_2$ and $C1/H_2O_2$ for 2 hrs. Black trace for MO before treatment, red trace after 1 hr in presence of H_2O_2 , blue trace after 1 hr in presence of $CuCl_2/H_2O_2$, green trace after 1 hr. in presence of $C1/H_2O_2$, violet trace after 2 hrs in presence of H_2O_2 , light orange trace after 2 hrs in presence of $CuCl_2/H_2O_2$ (B) The percentage degradation of MO in presence of H_2O_2 , $CuCl_2/H_2O_2$, $CuCl_2/H_2O_2$ after 2 hrs.

Figure S21. (A) Optical spectra recorded for MR (Methyl Red) in presence of H_2O_2 , $CuCl_2/H_2O_2$ and $C1/H_2O_2$ for 30 min. Black trace for MR before treatment, red trace after 10 min. in presence of H_2O_2 , blue trace after 10 min. in presence of $CuCl_2/H_2O_2$, green trace after 10 min in presence of $C1/H_2O_2$, violet trace after 20 min. in presence of H_2O_2 , light orange trace after 20 min. in presence of $CuCl_2/H_2O_2$, purple trace after 30 min. in presence of H_2O_2 , light green trace after 30 min. in presence of $CuCl_2/H_2O_2$, orange trace after 30 min. in presence of $C1/H_2O_2$, light green trace after 30 min. in presence of $CuCl_2/H_2O_2$, orange trace after 30 min. in presence of $C1/H_2O_2$, light green trace after 30 min. in presence of $CuCl_2/H_2O_2$, orange trace after 30 min. in presence of $C1/H_2O_2$ and $C1/H_2O_2$ after 30 min.

Figure S22. (A) Optical spectra recorded for RB-5 (Reactive Black-5) in presence of H_2O_2 , $CuCl_2/H_2O_2$ and $C1/H_2O_2$ for 3 hrs. Black trace for RB-5 before treatment, red trace after 1 hr in presence of H_2O_2 , blue trace after 1 hr in presence of $CuCl_2/H_2O_2$, green trace after 1 hr. in presence of $C1/H_2O_2$, violet trace after 2 hrs in presence of H_2O_2 , light orange trace after 2 hrs in presence of H_2O_2 , sky blue trace after 2 hrs in presence of $C1/H_2O_2$, purple trace after 3 hrs in presence of H_2O_2 , light green trace after 3 hrs in presence of $C1/H_2O_2$. (B) The percentage degradation of RB-5 in presence of H_2O_2 , $CuCl_2/H_2O_2$ and $C1/H_2O_2$ after 3 hrs.

Figure S23. (A) Optical spectra recorded for DE-1 (Dye Effluent-1) in presence of H_2O_2 , $CuCl_2/H_2O_2$ and $C1/H_2O_2$ for 20 min. Black trace for DE-1 before treatment, red trace after 20 min in presence of H_2O_2 , blue trace after 20 min in presence of $CuCl_2/H_2O_2$, green trace after 20 min in presence of $C1/H_2O_2$. (B) The percentage degradation of DE-1 in presence of H_2O_2 , $CuCl_2/H_2O_2$ and $C1/H_2O_2$ after 20 min.

Figure S24. (A) Optical spectra recorded for DE-2 (Dye Effluent-2) in presence of H_2O_2 , $CuCl_2/H_2O_2$ and $C1/H_2O_2$ for 90 min. Black trace for DE-2 before treatment, red trace after 30 min in presence of H_2O_2 , blue trace after 30 min in presence of $CuCl_2/H_2O_2$, green trace after 30 min in presence of $C1/H_2O_2$, violet trace after 60 min in presence of H_2O_2 , light orange trace after 60 min in presence of $CuCl_2/H_2O_2$, purple trace after 90 min in presence of H_2O_2 , light green trace after 90 min in presence of $CuCl_2/H_2O_2$, orange trace after 90 min in presence of $C1/H_2O_2$, light green trace after 90 min in presence of $CuCl_2/H_2O_2$, orange trace after 90 min in presence of $C1/H_2O_2$. (B) The percentage degradation of DE-2 in presence of H_2O_2 , $CuCl_2/H_2O_2$ and $C1/H_2O_2$ after 90 min.

Figure S25. (A) Optical spectra recorded for DE-3 (Dye Effluent-3) in presence of H_2O_2 , $CuCl_2/H_2O_2$ and $C1/H_2O_2$ for 2 hrs. Black trace for DE-3 before treatment, red trace after 1 hr in presence of H_2O_2 , blue trace after 1 hr in presence of $CuCl_2/H_2O_2$, green trace after 1 hr in presence of $C1/H_2O_2$, violet trace after 2 hrs in presence of H_2O_2 , light orange trace after 2 hrs in presence of $CuCl_2/H_2O_2$. (B) The percentage degradation of DE-3 in presence of H_2O_2 , $CuCl_2/H_2O_2$, $CuCl_2/H_2O_2$ and $C1/H_2O_2$ after 2 hrs.

Figure S26. (A) Optical spectra recorded for DE-4 (Dye Effluent-4) in presence of H_2O_2 , $CuCl_2/H_2O_2$ and $C1/H_2O_2$ for 20 min. Black trace for DE-4 before treatment, red trace after 20 min in presence of H_2O_2 , blue trace after 20 min in presence of $CuCl_2/H_2O_2$, green trace after 20 min in presence of $C1/H_2O_2$ (B) The percentage degradation of DE-4 in presence of H_2O_2 , $CuCl_2/H_2O_2$ and $C1/H_2O_2$ after 20 min.

Figure S27. (A) The Concentration of CO₂ and CO calculated after 8 hrs treatment of Rh-6G, black trace for CO gas (H₂O₂), red trace for CO₂ gas (H₂O₂), blue trace for CO gas (CuCl₂/H₂O₂), green trace for CO₂ gas (CuCl₂/H₂O₂), violet trace for CO gas (C1/H₂O₂) and light yellow trace for CO₂ gas (C1/H₂O₂) (B) GC chromatogram obtained for CO₂ and CO after 8 hrs treatment of Rh-6G. Black, blue and violet trace recorded before treatment at 0 min in presence of H₂O₂, CuCl₂/H₂O₂ and CuCl₂/H₂O₂ respectively. Red, green and light yellow trace recorded after treatment at 8 hrs in presence of H₂O₂, CuCl₂/H₂O₂ and CuCl₂/H₂O₂ respectively.

Figure S28. (A) The Concentration of CO₂ and CO calculated after 8 hrs treatment of AB-10B, black trace for CO gas (H_2O_2), red trace for CO₂ gas (H_2O_2), blue trace for CO gas (CuCl₂/H₂O₂), green trace for CO₂ gas (CuCl₂/H₂O₂), violet trace for CO gas (C1/H₂O₂) and light yellow trace for CO₂ gas (C1/H₂O₂) (B) GC chromatogram obtained for CO₂ and CO after 8 hrs treatment of AB-10B. Black, blue and violet trace recorded before treatment at 0 min in presence of H₂O₂, CuCl₂/H₂O₂ and CuCl₂/H₂O₂ respectively. Red, green and light yellow trace recorded after treatment at 8 hrs in presence of H₂O₂, CuCl₂/H₂O₂ and CuCl₂/H₂O₂ respectively.

Figure S29. (A) The Concentration of CO₂ and CO calculated after 8 hrs treatment of BBG, black trace for CO gas (H_2O_2), red trace for CO₂ gas (H_2O_2), blue trace for CO gas ($CuCl_2/H_2O_2$), green trace for CO₂ gas ($CuCl_2/H_2O_2$), violet trace for CO gas ($C1/H_2O_2$) and light yellow trace for CO₂ gas ($C1/H_2O_2$) (B) GC chromatogram obtained for CO₂ and CO after 8 hrs treatment of BBG. Black, blue and violet trace recorded before treatment at 0 min in presence of H_2O_2 , $CuCl_2/H_2O_2$ and $CuCl_2/H_2O_2$ respectively. Red, green and light yellow trace recorded after treatment at 8 hrs in presence of H_2O_2 , $CuCl_2/H_2O_2$ and $CuCl_2/H_2O_2$ and $CuCl_2/H_2O_2$.

Figure S30. (A) The Concentration of CO₂ and CO calculated after 8 hrs treatment of BG, black trace for CO gas (H₂O₂), red trace for CO₂ gas (H₂O₂), blue trace for CO gas (CuCl₂/H₂O₂), green trace for CO₂ gas (CuCl₂/H₂O₂), violet trace for CO gas (C1/H₂O₂) and light yellow trace for CO₂ gas (C1/H₂O₂) (B) GC chromatogram obtained for CO₂ and CO after 8 hrs treatment of BG. Black, blue and violet trace recorded before treatment at 0 min in presence of H₂O₂, CuCl₂/H₂O₂ and CuCl₂/H₂O₂ respectively. Red, green and light yellow trace recorded after treatment at 8 hrs in presence of H₂O₂, CuCl₂/H₂O₂ and CuCl₂/H₂O₂ respectively.

Figure S31. (A) The Concentration of CO₂ and CO calculated after 8 hrs treatment of CR, black trace for CO gas (H₂O₂), red trace for CO₂ gas (H₂O₂), blue trace for CO gas (CuCl₂/H₂O₂), green trace for CO₂ gas (CuCl₂/H₂O₂), violet trace for CO gas (C1/H₂O₂) and light yellow trace for CO₂ gas (C1/H₂O₂) (B) GC chromatogram obtained for CO₂ and CO after 8 hrs treatment of CR. Black, blue and violet trace recorded before treatment at 0 min in presence of H₂O₂, CuCl₂/H₂O₂ and CuCl₂/H₂O₂ respectively. Red, green and light yellow trace recorded after treatment at 8 hrs in presence of H₂O₂, CuCl₂/H₂O₂ and CuCl₂/H₂O₂ and CuCl₂/H₂O₂ and CuCl₂/H₂O₂ respectively.

Figure S32. (A) The Concentration of CO_2 and CO calculated after 8 hrs treatment of DB-71, black trace for CO gas (H₂O₂), red trace for CO₂ gas (H₂O₂), blue trace for CO gas (CuCl₂/H₂O₂), green trace for CO₂ gas (CuCl₂/H₂O₂), violet trace for CO gas (C1/H₂O₂) and light yellow trace for CO₂ gas (C1/H₂O₂) (B) GC chromatogram obtained for CO₂ and CO after 8 hrs treatment of DB-71. Black, blue and violet trace recorded before treatment at 0 min in presence of H₂O₂, CuCl₂/H₂O₂ and CuCl₂/H₂O₂ respectively. Red, green and light yellow trace recorded after treatment at 8 hrs in presence of H₂O₂, CuCl₂/H₂O₂ and CuCl₂/H₂O₂ respectively.

Figure S33. (A) The Concentration of CO₂ and CO calculated after 8 hrs treatment of FS, black trace for CO gas (H₂O₂), red trace for CO₂ gas (H₂O₂), blue trace for CO gas (CuCl₂/H₂O₂), green trace for CO₂ gas (CuCl₂/H₂O₂), violet trace for CO gas (C1/H₂O₂) and light yellow trace for CO₂ gas (C1/H₂O₂) (B) GC chromatogram obtained for CO₂ and CO after 8 hrs treatment of FS. Black, blue and violet trace recorded before treatment at 0 min in presence of H₂O₂, CuCl₂/H₂O₂ and CuCl₂/H₂O₂ respectively. Red, green and light yellow trace recorded after treatment at 8 hrs in presence of H₂O₂, CuCl₂/H₂O₂ and CuCl₂/H₂O₂ and CuCl₂/H₂O₂ respectively.

Figure S34. (A) The Concentration of CO₂ and CO calculated after 8 hrs treatment of IC, black trace for CO gas (H₂O₂), red trace for CO₂ gas (H₂O₂), blue trace for CO gas (CuCl₂/H₂O₂), green trace for CO₂ gas (CuCl₂/H₂O₂), violet trace for CO gas (C1/H₂O₂) and light yellow trace for CO₂ gas (C1/H₂O₂) (B) GC chromatogram obtained for CO₂ and CO after 8 hrs treatment of IC. Black, blue and violet trace recorded before treatment at 0 min in presence of H₂O₂, CuCl₂/H₂O₂ and CuCl₂/H₂O₂ respectively. Red, green and light yellow trace recorded after treatment at 8 hrs in presence of H₂O₂, CuCl₂/H₂O₂ and CuCl₂/H₂O₂ and CuCl₂/H₂O₂.

Figure S35. (A) The Concentration of CO₂ and CO calculated after 8 hrs treatment of MBH, black trace for CO gas (H₂O₂), red trace for CO₂ gas (H₂O₂), blue trace for CO gas (CuCl₂/H₂O₂), green trace for CO₂ gas (CuCl₂/H₂O₂), violet trace for CO gas (C1/H₂O₂) and light yellow trace for CO₂ gas (C1/H₂O₂) (B) GC chromatogram obtained for CO₂ and CO after 8 hrs treatment of MBH. Black, blue and violet trace recorded before treatment at 0 min in presence of H₂O₂, CuCl₂/H₂O₂ and CuCl₂/H₂O₂ respectively. Red, green and light yellow trace recorded after treatment at 8 hrs in presence of H₂O₂, CuCl₂/H₂O₂ and CuCl₂/H₂O₂ respectively.

Figure S36. (A) The Concentration of CO₂ and CO calculated after 8 hrs treatment of MO, black trace for CO gas (H₂O₂), red trace for CO₂ gas (H₂O₂), blue trace for CO gas (CuCl₂/H₂O₂), green trace for CO₂ gas (CuCl₂/H₂O₂), violet trace for CO gas (C1/H₂O₂) and light yellow trace for CO₂ gas (C1/H₂O₂) (B) GC chromatogram obtained for CO₂ and CO after 8 hrs treatment of MO. Black, blue and violet trace recorded before treatment at 0 min in presence of H₂O₂, CuCl₂/H₂O₂ and CuCl₂/H₂O₂ respectively. Red, green and light yellow trace recorded after treatment at 8 hrs in presence of H₂O₂, CuCl₂/H₂O₂ and CuCl₂/H₂O₂ respectively.

Figure S37. (A) The Concentration of CO₂ and CO calculated after 8 hrs treatment of MR, black trace for CO gas (H₂O₂), red trace for CO₂ gas (H₂O₂), blue trace for CO gas (CuCl₂/H₂O₂), green trace for CO₂ gas (CuCl₂/H₂O₂), violet trace for CO gas (C1/H₂O₂) and light yellow trace for CO₂ gas (C1/H₂O₂) (B) GC chromatogram obtained for CO₂ and CO after 8 hrs treatment of MR. Black, blue and violet trace recorded before treatment at 0 min in presence of H₂O₂, CuCl₂/H₂O₂ and CuCl₂/H₂O₂ respectively. Red, green and light yellow trace recorded after treatment at 8 hrs in presence of H₂O₂, CuCl₂/H₂O₂ and CuCl₂/H₂O₂ respectively.

Figure S38. (A) The Concentration of CO₂ and CO calculated after 8 hrs treatment of RB-5, black trace for CO gas (H_2O_2), red trace for CO₂ gas (H_2O_2), blue trace for CO gas ($CuCl_2/H_2O_2$), green trace for CO₂ gas ($CuCl_2/H_2O_2$), violet trace for CO gas ($C1/H_2O_2$) and light yellow trace for CO₂ gas ($C1/H_2O_2$) (B) GC chromatogram obtained for CO₂ and CO after 8 hrs treatment of RB-5. Black, blue and violet trace recorded before treatment at 0 min in presence of H_2O_2 , $CuCl_2/H_2O_2$ and $CuCl_2/H_2O_2$ respectively. Red, green and light yellow trace recorded after treatment at 8 hrs in presence of H_2O_2 , $CuCl_2/H_2O_2$ and $CuCl_2/H_2O_2$ and $CuCl_2/H_2O_2$.

Figure S39. (A) The Concentration of CO₂ and CO calculated after 8 hrs treatment of DE-1, black trace for CO gas (H₂O₂), red trace for CO₂ gas (H₂O₂), blue trace for CO gas (CuCl₂/H₂O₂), green trace for CO₂ gas (CuCl₂/H₂O₂), violet trace for CO gas (C1/H₂O₂) and light yellow trace for CO₂ gas (C1/H₂O₂) (B) GC chromatogram obtained for CO₂ and CO after 8 hrs treatment of DE-1. Black, blue and violet trace recorded before treatment at 0 min in presence of H₂O₂, CuCl₂/H₂O₂ and CuCl₂/H₂O₂ respectively. Red, green and light yellow trace recorded after treatment at 8 hrs in presence of H₂O₂, CuCl₂/H₂O₂ and CuCl₂/H₂O₂ respectively.

Figure S40. (A) The Concentration of CO₂ and CO calculated after 8 hrs treatment of DE-2, black trace for CO gas (H₂O₂), red trace for CO₂ gas (H₂O₂), blue trace for CO gas (CuCl₂/H₂O₂), green trace for CO₂ gas (CuCl₂/H₂O₂), violet trace for CO gas (C1/H₂O₂) and light yellow trace for CO₂ gas (C1/H₂O₂) (B) GC chromatogram obtained for CO₂ and CO after 8 hrs treatment of DE-2. Black, blue and violet trace recorded before treatment at 0 min in presence of H₂O₂, CuCl₂/H₂O₂ and CuCl₂/H₂O₂ respectively. Red, green and light yellow trace recorded after treatment at 8 hrs in presence of H₂O₂, CuCl₂/H₂O₂ and CuCl₂/H₂O₂ respectively.

Figure S41. (A) The Concentration of CO₂ and CO calculated after 8 hrs treatment of DE-3, black trace for CO gas (H₂O₂), red trace for CO₂ gas (H₂O₂), blue trace for CO gas (CuCl₂/H₂O₂), green trace for CO₂ gas (CuCl₂/H₂O₂), violet trace for CO gas (C1/H₂O₂) and light yellow trace for CO₂ gas (C1/H₂O₂) (B) GC chromatogram obtained for CO₂ and CO after 8 hrs treatment of DE-3. Black, blue and violet trace recorded before treatment at 0 min in presence of H₂O₂, CuCl₂/H₂O₂ and CuCl₂/H₂O₂ respectively. Red, green and light yellow trace recorded after treatment at 8 hrs in presence of H₂O₂, CuCl₂/H₂O₂ and CuCl₂/H₂O₂ respectively.

Figure S42. (A) The Concentration of CO₂ and CO calculated after 8 hrs treatment of DE-4, black trace for CO gas (H₂O₂), red trace for CO₂ gas (H₂O₂), blue trace for CO gas (CuCl₂/H₂O₂), green trace for CO₂ gas (CuCl₂/H₂O₂), violet trace for CO gas (C1/H₂O₂) and light yellow trace for CO₂ gas (C1/H₂O₂) (B) GC chromatogram obtained for CO₂ and CO after 8 hrs treatment of DE-4. Black, blue and violet trace recorded before treatment at 0 min in presence of H₂O₂, CuCl₂/H₂O₂ and CuCl₂/H₂O₂ respectively. Red, green and light yellow trace recorded after treatment at 8 hrs in presence of H₂O₂, CuCl₂/H₂O₂ and CuCl₂/H₂O₂ respectively.

Figure 43. COD (Chemical Oxygen Demand) measured for DE-2 and Rh-6G before and after pretreatment. COD results of dyes DE-2 and Rh-6G after 2 hrs. and 8 hrs. respectively. After treatment, COD has decreased up to 95-98 % in the case of all dyes.

Figure S45. Optical spectra recorded for C1 (0.1 mM) in water (pH 12.0) before (black trace) and after (red trace) the dye treatment studies. All data recorded at room temperature.

Figure S46. The XPS spectra recorded for Cu2p (left) and O1s (right) region before and after the dye treatment. The raw data is represented in black trace, while the convoluted data is shown in colred traces.

Figure S47. (A) The concentration of CO₂ and CO calculated after 8 hrs treatment of DE-1 in presence of CuCl₂/H₂O₂ before the addition of IPA (isopropyl alcohol) and after addition of IPA (C1: IPA ratio, 1:100). black trace for CO gas in presence of CuCl₂/H₂O₂ absence of IPA, red trace for CO₂ gas in presence of CuCl₂/H₂O₂ and absence of IPA, blue trace for CO in presence of CuCl₂/H₂O₂ and IPA, green trace for CO₂ in presence of CuCl₂/H₂O₂ and IPA. (B) The concentration of CO₂ and CO calculated after 8 hrs treatment of Rh-6G in presence of C1/H₂O₂ before the addition of IPA (isopropyl alcohol) and after addition of IPA (C1: IPA ratio, 1:100). black trace for CO gas in presence of C1/H₂O₂ absence of IPA, red trace for CO₂ gas in presence of C1/H₂O₂ and absence of IPA, blue trace for CO in presence of C1/H₂O₂ and IPA, green trace for CO₂ in presence of C1/H₂O₂ and IPA.

		Percentage	Percentage	Percentage		
S No	Name of dyes	Degradation	Degradation after	Degradation after	Degradation	
5.110.	Traine of uyes	after treated	treated with	treated with	time	
		with H ₂ O ₂	CuCl ₂ /H ₂ O ₂	C1/H ₂ O ₂		
1	Amido Black	(20	5(90	06.84	80	
1.	(AB-10B)	6.30	56.80	96.84	00 11111	
2.	Brilliant Blue G	15.00	50.00	98.50	6 hrs	
	(BBG)	10100			•	
3.	Brilliant green	36.45	45.83	96.33	4 hrs	
	(BG)			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
4.	Carmine	8.00	62.80	100	1 hr	
	(CR)				L	
5.	Direct Blue-71	2.00	9.00	100	1 hr	
	(DB-71)					
6.	Fluorescein	11.70	21.70	99.50	1 hr	
	(FS)					
7.	Indigo Carmine	24.00	54.00	100	30 min	
, -	(IC)					
8.	Methylene Blue	11.20	18.20	97.30	8 hrs	
	Hydrate (MBH)		10.20	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
9	Methyl Orange	20.25	29.70	100	2 hrs	
	(MO)	20.20	25.70	100	2 1115	
10	Methyl Red	6.00	19.60	100	30 min	
10	(MR)	0.00	19.00	100		
11	Reactive Black-5	4 90	34 50	98 70	3 hrs	
	(RB-5)		2 110 0	20170	2 113	
12	Rhodamine 6G	5.00	10.00	94.00	8 hrs	
12	(Rh-6G)	2.00	10.00	9 1100	0 1115	
13	Dye effluent-1	8.20	22.50	100	20 min	
	(DE-1)					
14	Dye effluent-2	11.20	22.04	100	2 hrs	
	(DE-2)	11.20	22.01	100	2 1115	
15	Dye effluent-3	6 50	34 50	100	2 hrs	
	(DE-3)				2 110	
16	Dye effluent-4	3,50	23 25	100	20 min	
	(DE-4)					

Table S1. Percentage degradation of standard dyes and industrial effluent in presence of different analysts (H_2O_2 , $CuCl_2/H_2O_2$, and $C1/H_2O_2$) at room temperature and pH 7.0.

	DI	E-1	DI	E-2	DE-3			
Parameters	Before	After	Before	After	Before	After		
	treatment	treatment	treatment	treatment	treatment	treatment		
pН	12.84	8.3	10.10	8.46	12.31	8.6		
TDS (mg/l)	3500	2530	6770	5400	6000	5400		
COD (mg/l)	2150	< 100	4500	<250	2150	<250		
Electrical								
Conductivity	10.74	8.95	11.50	10.50	10.74	8.95		
(mS/cm)								
Color	Dark blue Colorless		Dark groon	Colorloss	Dark bluish	Colorlogg		
Color			Dark green	Coloriess	green	Coloriess		

Table S2. Change in water quality parameters before and after the two-stage dye treatment

Reference

 Ali, A.; Prakash, D.; Majumder, P.; Ghosh, S.; Dutta, A. Flexible Ligand in a Molecular Cu Electrocatalyst Unfurls Bidirectional O2/H2O Conversion in Water. ACS Catal. 2021, 11 (10), 5934–5941. https://doi.org/10.1021/acscatal.1c01542.