Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2023

1 Supplemental Information

2

3 Membrane Coating Methods.

Attachment of zeolite procedure using UV (Attachment – UV method). Faujasite zeolite nano particles
were made using the following procedure. 1.1 g of Na₂Al₂SO₄ (Sigma Aldrich) in 10 mL of water was
mixed with 2.4 g of NaOH and 18.1 g of Na₂SiO₃ solution (Sigma Aldrich) were chilled in an ice bath
for 30 min. The Na₂Al₂SO₄ mixture was added slowly added to Na₂SiO₃. After aging for 24 hours at
room temperature, the mixture was freeze dried and then crystalized for 2 days at 50 °C. Solution
was centrifuged, washed, and dried to produce a zeolite powder.

10

PSf membranes were prepared as described by Binahmed et al.² Zeolite was attached to the
membranes using a similar procedure as described by Kulak et al.⁴ Briefly, zeolite was dried for 24
hours at 100 °C using a Schlenk Line (100 millitorr) and treated with 3-aminoproplytriethoxysilane
(APTES) (2 mM) (Sigma Aldrich) in toluene for 1 hour at 70 °C under nitrogen. PSf membranes
were irradiated with a UV lamp (Spetroline Model EF-160C) for 15 seconds to create carboxylic
groups on the membrane surface and treated with [3-(2,3epoxypropoxylpropyl]-trimethoxysilane
(GLYMO) (2 mM) (Sigma Aldrich) in iso-octane for 1 hour at room temperature under nitrogen.

19 The treated zeolite was dried at 70 °C overnight and resuspended in iso-octane and applied to the 20 treated PSf membrane for 1 hour while mixing. Coated membranes were rinsed and sonicated for 20 21 seconds to remove non-attached particles. Membranes were stored at 4 °C in deionized (DI) water.

22

23 Attachment of zeolite procedure using UV and poly(acrylic acid (PAA) (Attachment – AA/UV

24 *method*). The previous procedure was modified to apply 10% acrylic acid (AA) solution from stock

25 99% AA (Sigma Aldrich) in MilliQ to the PSf membrane immediately after membrane oxidation with

1

26	UV exposure for the growth of PAA and enhance the coverage of carboxylic groups on the membrane
27	surface. ³ AA (10%) was applied for 5 minutes and immediately rinsed with MilliQ water. A more
28	detailed procedure is described in Wuolo-Journey et al. ³ The procedure continued as described in the
29	attachment procedure using UV.
30	
31	Attachment of zeolite procedure using EDC-NHS (Attachment – EDC/NHS). Beginning with UV/AA
32	treatment, this procedure then uses 4 mM 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
33	hydrochloride (EDC) (Sigma Aldrich) and 10 mM N-hydroxysuccinimide (NHS) (Sigma Aldrich),
34	adjusted to pH 5 with 10 mM MES (Sigma Aldrich) supplemented with 0.5 M NaCl. This solution is
35	applied to PSf membrane while mixing at ambient conditions for one hour. ^{3, 5} Membrane was then
36	rinsed and zeolite applied as described above.
37	
38	Attachment of zeolite procedure using polydopamine coating (Attachment – PDA). PSf membranes
39	were prepared and stored as described earlier. ² Dopamine solution was prepared using 4 g of 3,4-
40	dihydroxyphenylalanine (DOPA) (Sigma Aldrich) in 1 L of Trizma buffer (10 mM) (Sigma
41	Aldrich). ^{2, 8} Once mixed, 50 mg of zeolite, prepared as described above, was added to the solution.
42	The pH was adjusted to 8.5 using 1 M NaOH. Dopamine solution was immediately transferred to the
43	membrane to initiate PDA deposition for 15 minutes while mixing. Membranes were then
44	immediately rinsed thoroughly with MilliQ and stored in MilliQ at 4 °C.
45	
46	Embedment of zeolite into PSf membranes (Embedment). PSf membranes were prepared as described
47	previously. ² 50 mg of zeolite nano powder (prepared as described previously) was added directly to
48	the dope solution after solution was stored overnight to remove air bubbles. After the membranes
49	were cast, they were stored in MilliQ at 4 °C until use.
50	

51 *Growth of zeolite on alumina hollow fiber membranes (Growth).* Growth of faujasite zeolite on

52 alumina hollow fiber membranes (0.7 mm diameter) is described in previous work.⁷ Briefly, raw

53 fibers of 38.0% N-Methyl-2-pyrrolidone (NMP), 6.8% polyethersulfone (PES), 54.7% Al₂O₃, and

54 05% polyvinylpyrrolidone (PVP) were sintered to make alumina hollow fiber membranes. Zeolite

55 growth on the membrane surface occurred by immersing in a solution of 7.7 M NaOH, colloidal silica

56 (Ludox TM-40, Sigma Alrich), and 0.15 of aluminum for 24 hours at 75 °C. Plain and zeolite-coated

57 membranes were stored dry in sterile containers at ambient conditions until use.

58

59 Table S1. Synthetic wastewater components in mg per liter for CFTR and ACFTR

	CFTR	ACFTR	
NH ₄ Cl	133.75	133.75	mg
NaNO ₂	103.5	0	mg
Magnesium Phosphate Dibasic Trihydrate	25	25	mg
Potassium Phosphate Tribasic	20	20	mg
NaHCO ₃	275	275	mg
Sodium acetate	221	221	mg
Bacteriological peptone	24	24	mg
Dry meat extract	12	12	mg
Potato starch	42	42	mg
Low fat milk powder	50	50	mg
Glycerine	34	34	mg

60

61 Table S2. Synthetic wastewater components in mg per liter for MFTR and Bioavailability Test

	MFTR	Bioavailability Test	
NH ₄ Cl	133.75	0	mg

NaNO ₂	0	236.4	mg
KH ₂ PO ₄	27.2	27.2	mg
KHCO3	500	500	mg
Trace solution 1	1	1	mL
Trace solution 2	1	1	mL
Mg solution	1	1	mL
Ca solution	1	1	mL

62 [†]Trace solutions are detailed in Peterson et al.²²

63 Table S3. Constants of isotherm equations

q _e	Ammonium sorbed per unit mass of membrane or carrier
q _{max}	Maximum sorption capacity
k	Adsorption equilibrium constant
c _f	Concentration of ammonium in solution
k _f	Fruendlich constant
n	Emprical isotherm constant

64

65

66 References

67	1.	J. Gascon, F. Kapteijn, B. Zornoza, V. Sebastián, C. Casado and J. Coronas, Practical Approach
68		to Zeolitic Membranes and Coatings: State of the Art, Opportunities, Barriers, and Future
69		Perspectives, Chemistry of Materials, 2012, 24, 2829-2844.
70	2.	S. Binahmed, A. Hasane, Z. Wang, A. Mansurov and S. Romero-Vargas Castrillón, Bacterial
71		Adhesion to Ultrafiltration Membranes: Role of Hydrophilicity, Natural Organic Matter, and
72		Cell-Surface Macromolecules, Environmental Science and Technology, 2018, 52, 162-172.
73	3.	K. Wuolo-Journey, S. Binahmed, E. Linna and S. Romero-Vargas Castrillón, Do graphene oxide
74		nanostructured coatings mitigate bacterial adhesion?, Environmental Science: Nano, 2019, 6,
75		2863-2875.

- A. Kulak, Y.-J. Lee, Y. S. Park and K. B. Yoon, Orientation-Controlled Monolayer Assembly of
 Zeolite Crystals on Glass and Mica by Covalent Linkage of Surface-Bound Epoxide and Amine
 Groups, *Angewandte Chemie*, 2000, **112**, 980-983.
- H. Croll, A. Soroush, M. E. Pillsbury and S. R.-V. Castrillón, Graphene oxide surface
 modification of polyamide reverse osmosis membranes for improved N-nitrosodimethylamine
 (NDMA) removal, *Separation and Purification Technology*, 2019, 210, 973-980.
- E. C. Feinberg, A. L. H. Chester, P. J. Novak and M. A. Hillmyer, Porous PolyethyleneSupported Zeolite Carriers for Improved Wastewater Deammonification, *ACS ES&T Engineering*, 2021, 1, 1104-1112.
- A. L. Huff Chester, K. Eum, M. Tsapatsis, M. A. Hillmyer and P. J. Novak, Enhanced Nitrogen
 Removal and Anammox Bacteria Retention with Zeolite-Coated Membrane in Simulated
- 87 Mainstream Wastewater, *Environmental Science & Technology Letters*, 2021, **8**, 468-473.
- 88 8. J. Xue, S. Binahmed, Z. Wang, N. G. Karp, B. L. Stottrup and S. Romero-Vargas Castrillón,
- 89 Bacterial Adhesion to Graphene Oxide (GO)-Functionalized Interfaces Is Determined by
- Hydrophobicity and GO Sheet Spatial Orientation, *Environmental Science & Technology Letters*,
 2018, 5, 14-19.
- 92