ELECTRONIC SUPPLEMENTARY INFORMATION

Unlocking the Effect of Zn²⁺ on Crystal Structure, Optical Properties, and Photocatalytic Degradation of Perfluoroalkyl Substances (PFAS) of Bi₂WO₆

Mirabbos Hojamberdiev^{1,*}, Ana Laura Larralde^{2,3}, Ronald Vargas^{4,5}, Lorean Madriz^{4,5}, Kunio Yubuta⁶, Lokesh Koodlur Sannegowda⁷, Ilona Sadok⁸, Agnieszka Krzyszczak-Turczyn^{8,9}, Patryk Oleszczuk⁹, and Bożena Czech^{9,*}

¹Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany

²Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina

³Instituto Nacional de Tecnología Industrial, Avenida General Paz 5445, San Martín (B1650WAB), Buenos Aires, Argentina

⁴Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Intendente Marino, Km 8,2, Chascomús (B7130IWA), Provincia de Buenos Aires, Argentina

⁵Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martín (UNSAM), Avenida Intendente Marino, Km 8,2, Chascomús (B7130IWA), Provincia de Buenos Aires, Argentina

⁶Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka 819-0395, Japan

⁷Department of Studies in Chemistry, Vijayanagara Sri Krishnadevaraya University, Cantonment, Vinayakanagara, Ballari, 583105, India

⁸Department of Chemistry, Institute of Biological Sciences, Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland

⁹Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 3 Maria Curie-Skłodowska Sq., 20-031 Lublin, Poland

*Corresponding authors: E-mail addresses: bozena.czech@mail.umcs.pl (B. Czech) and hmirabbos@gmail.com (M. Hojamberdiev)

LC-QTOF/MS – instrumentation and analysis conditions

A 1200 Series high-performance liquid chromatograph (Agilent Technologies) fitted with autosampler, quaternary pump with degasser, column thermostat and coupled to a tandem mass spectrometer (Agilent Technologies 6538 UHD Accurate Mass Q-TOF LC/MS) equipped with a dual ESI ion source was used. The analytical column used was the Zorbax Eclipse Plus C18 rapid resolution HT (2.1×50 mm, 1.8μ m). A 3-min linear gradient of aqueous solutions (5 mmol· L^{-1}) of ammonium formate (A) and methanol (B) with an increase from 30% to 60% (3 min post-run at 30% B, 0.3 mL·min⁻¹ flow rate, and 40°C column temperature) was used in the chromatographic analyses. The analytes were ionized in the negative ion polarity mode. The temperature of an ion source gas (nitrogen) was 280°C, and the flow rate was 9 L. min⁻¹. The capillary potential, fragmentor, and nebulizer pressure were set to 3500 V, 80 V, and 35 psi, respectively. The ions were acquired in a MS scan mode at 50-1000 m/z with a scan rate of 1 scan s⁻¹ (number of transients: 5975 and collision energy: 0 eV). Internal mass calibration was enabled using three reference mass ions (112.985587, 301.998139, and 1033.988109). The samples were analyzed in triplicate (injection volume: 5 µL). After the sample injection, the needle was washed with methanol. The quantification was performed on unprotonated ions [M-H]⁻. For PFH_xA, an ion of m/z = 312.9748and the isotopically labeled internal standard ($[^{13}C_6]$ -PFH_xA) ion of m/z = 318.9921 were extracted, respectively. Data acquisition and analysis were performed using Agilent Mass Hunter software versions B.06.01 and B.07.00, respectively. For the quantitative analysis of PFH_xA , each sample was fortified with ${}^{13}C_6$ -PFHxA (0.25 mg·L⁻¹), vortexed, and passed through a 0.22 μ m polypropylene (PP) syringe filter (Bioanalytic, Gdańsk, Poland) into the PP chromatographic vial and analyzed using LC-QTOF/MS. An example of the extracted ion chromatograms is presented in Figure S1.

Figure S1. Extracted ion chromatograms of PFH_xA and ${}^{13}C_6$ - PFH_xA .

Figure S2. Unit cell volume of $Bi_{2-x}Zn_xWO_{6+\delta}$ as a function of Zn^{2+} content.

Figure S3. TEM (a) and HRTEM (b) images of Zn17.5.

Conditions	Efficiency	Light	References
		source	
Photo-Fenton process	90% degradation and	UV	Chem. Eng. J., 2012, 184, 156-
	53.2% defluorination		162.
	after 5 h		
In ₂ O ₃ porous	100% within 30 min	UV	Appl. Catal. B, 2012, 125, 350-
nanospheres			357.
BiOC1	59.3% defluorination	IIV	Cham Eng. I. 2017 317 925
bioci	after 3 h		934.
β -Ga ₂ O ₃ nanoplates	100% within 3 h	UV (185 n	Appl. Catal. B, 2013, 142–143,
		m)	654–661.
In ₂ O ₃	100% decomposition of	UV	Chemosphere, 2017, 189, 717–
	PFAS		729.
Fe/TNTs@AC	>90% decomposition of	UV	Water Res., 2020, 185, 116219.
	PFOA in 4 h, of which		
	62% was completely		
	mineralized to F ⁻		
Iron (Fe ⁰)	90±1% degradation after	UV	<i>J. Water Process. Eng.</i> , 2022, 46 ,
nanoparticles	2 h	(pH=3.0)	102556.
WO_3/TiO_2 catalysts	4 %–26 % after 4 h	UVA+Vis+	Sci. Total Environ., 2022, 843,
$(0-5 \text{ wt\% WO}_3)$		O ₃	157006.
Pb-doped TiO ₂ coated	98% after 24 h	UV	Water Environ. Res., 2023, 95,
with reduced graphene			e10871.
oxide			
Hexagonal boron	>99% degradation of	UVC (254	Environ. Sci. Technol. Lett.,
nitride in UVC/VUV	PFOA in 15 min and	nm)	2023, 10 , 705–710.
system	65% degradation of		
	PFOS in 1 h		
$Zn2.5-Bi_2WO_6$	57% degradation in 45	Visible	This study
	min		

	Table S1.	Comparative	results of PFAS	degradation.
--	-----------	-------------	-----------------	--------------