Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Photochemical Conversion of Nitrate to Ammonium Ion by a Newly Developed Photo-

Reductive Titanium Dioxide Catalyst: Implications on Nitrogen Recovery

Andrew Sanchez¹, Zuyang Ye², Yadong Yin² and Haizhou Liu^{1,*}

Department of Chemical and Environmental Engineering, University of California at Riverside,

Riverside CA 92521 USA

Department of Chemistry, University of California at Riverside, Riverside CA 92521 USA

* Corresponding author, email: haizhou@engr.ucr.edu

Phone: (951) 827-2076, fax (951) 827-5696.

Number of pages: 10 Number of figures: 5

Number of tables: 2

Table of Contents

Table S1. Composition of synthetic groundwater used in this study. S3
Table S2 . Nitrate removal efficiency by photo-reduction TiO ₂ in DI water and synthetic groundwater matrix.* S4
Text S1. Ammonia Measurements
Figure S1 . UV-Vis for DEG-doped TiO ₂ nanoparticles synthesized at 230°C and for industrial TiO ₂ catalyst P25 both at 50 mg/L and Irradiance spectra output for the medium-pressure UV lamp used to conduct all experiments
Figure S2 . Transmission Electron Microscopy micrograph of synthesized photo-reductive TiO ₂ nanocrystals with different heating time for hydrolysis at 230°C. (A) 3 hours; (B) 6 hours; (C) 9 hours
Figure S3 . Nitrogen speciation profile during photochemical nitrate reactions in the presence of photo-oxidative P25 Degussa TiO ₂ catalyst. [Nitrate] = 1.6 mM , [TiO ₂] = 50 mg/L . pH = $7. \dots S8$
Figure S4 . Nitrogen speciation profile for nitrate solution in the catalyst control experiment in the absence of photocatalyst and only with UV irradiation. [Nitrate] = 1.6 mM , [TiO ₂] = 50 mg/L , pH = 7
Figure S5 . Nitrogen speciation profile for nitrate solution during photochemical reactions in the presence of synthesized DEG-TiO ₂ catalyst. Synthesis temperature = 230° C, [Nitrate] = 1.6 mM, [TiO ₂] = 50 mg/L, pH = 7

Chemical composition*	Concentration (mg/L)	
Nitrate	100	
Chloride	13	
Bicarbonate	38	
Sulfate	33	
Silica	37	
Sodium	14	
Potassium	4	
Calcium	24	
Magnesium	6	
TOC	4.5	
pH	8.0	

Table S1. Composition of synthetic groundwater used in this study.

* The synthetic groundwater chemical composition was based on reported values in literature (Ottofuelling, S.; Von Der Kammer, F.; Hofmann, T. Commercial Titanium Dioxide Nanoparticles in Both Natural and Synthetic Water: Comprehensive Multidimensional Testing and Prediction of Aggregation Behavior. *Environ. Sci. Technol.* **2011**, 45 (23), 10045–10052.)

•

Table S2. Nitrate removal efficiency by photo-reduction TiO2 in DI water and synthetic

groundwater matrix.*

Water Matrix	Nitrate Removal Efficiency (%)	Selectivity of ammonium ion (%)	Formation of nitrite (%)
DI Water	95	70	Not detected
Synthetic Groundwater	99	60	Not detected

*Nitrate removal, nitrite formation and ammonia selectivity data represent samples collected at 5 hours of the photocatalytic reaction.

Text S1. Ammonia Measurements

Phenol Reagent is prepared by adding 1.1 mL of liquified phenol to 9.9 mL of 200 proof ethanol in a tube. Sodium Nitroprusside is prepared by transferring 500 mg of sodium nitroprusside to a 100 mL flask and transferring the solution to a stock bottle. Alkaline Citrate is prepared by adding 10 g of sodium citrate anhydrous to a 50 mL volumetric flask, followed by 500 mg of sodium hydroxide. 10 mL of this solution is added to 2.5 mL of sodium hypochlorite to prepare a solution of hypochlorous alkaline citrate. 85 μ L of sample is added to 765 μ L of DI water, followed by 34 μ L of phenol solution, 34 μ L of sodium nitroprusside and 85 μ L of hypochlorous alkaline citrate solution. The sample is kept for 1 hour and read at 640 nm.

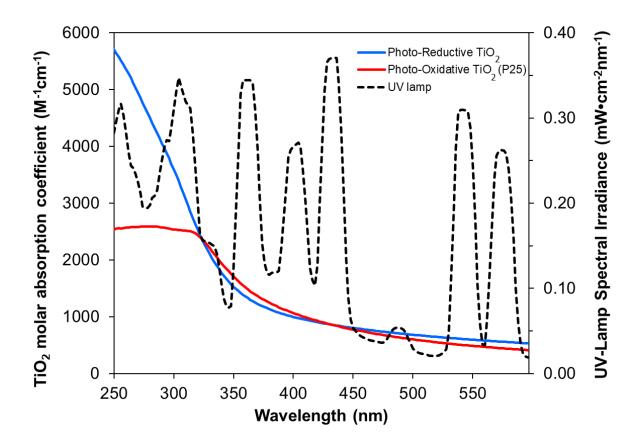
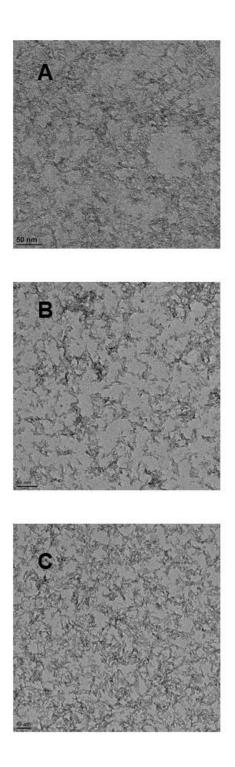
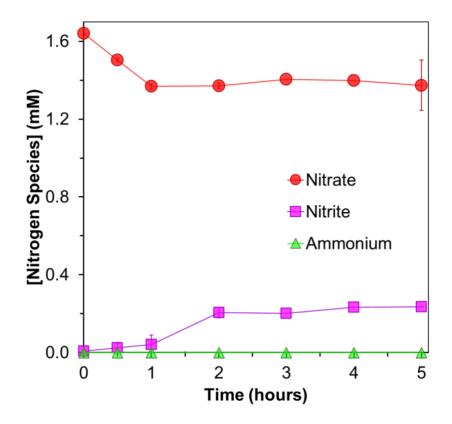




Figure S1. UV-Vis for DEG-doped TiO₂ nanoparticles synthesized at 230°C and for industrial TiO₂ catalyst P25 both at 50 mg/L and irradiance spectra output for the medium-pressure UV lamp used to conduct all experiments.

Figure S2. Transmission Electron Microscopy micrograph of synthesized photo-reductive TiO₂ nanocrystals with different heating time for hydrolysis at 230°C. (A) 3 hours; (B) 6 hours; (C) 9 hours.

Figure S3. Nitrogen speciation profile during photochemical nitrate reactions in the presence of photo-oxidative P25 Degussa TiO₂ catalyst. [Nitrate] = 1.6 mM, [TiO₂] = 50 mg/L. pH = 7.

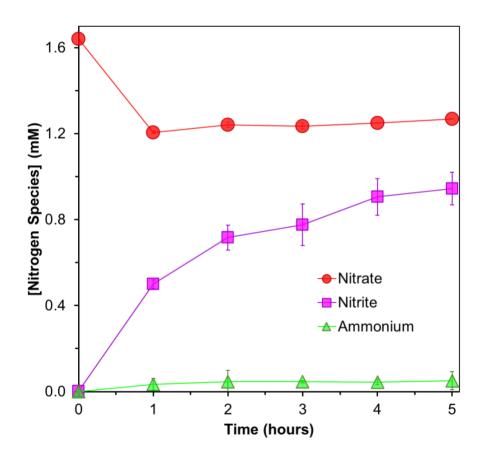


Figure S4. Nitrogen speciation profile for nitrate solution in the catalyst control experiment in the absence of photocatalyst and only with UV irradiation. [Nitrate] = 1.6 mM, [TiO₂] = 50 mg/L, pH = 7.

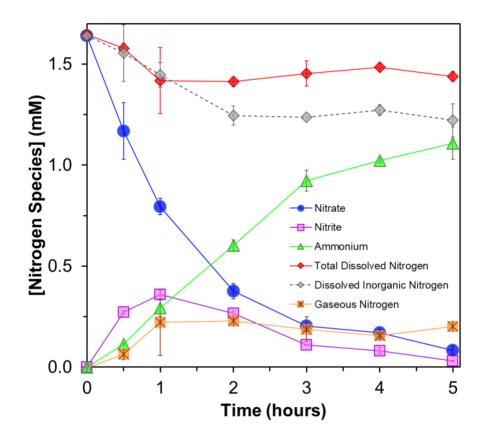


Figure S5. Nitrogen speciation profile for nitrate solution during photochemical reactions in the presence of synthesized DEG-TiO₂ catalyst. Synthesis temperature = 230° C, [Nitrate] = 1.6 mM, [TiO₂] = 50 mg/L, pH = 7.