Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2023

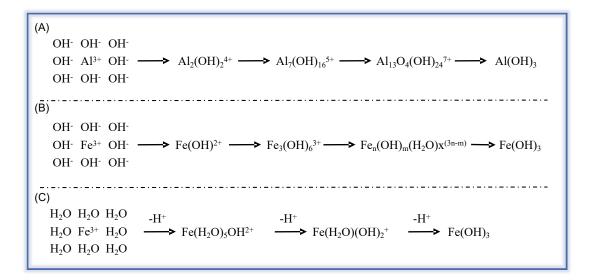
Comparison of different coagulants to improve membrane

distillation performance for landfill leachate concentrate treatment

Supplementary Data

Revised manuscript to Environmental Science: Water Research & Technology

September 2023


Ruohan Xia^a, Wancen Liu^a, Dingge Cao^a, Ning Wang^a, Guoxue Li^a, Long D. Nghiem^c, Wenhai Luo^{a,b*}

^a Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China

^b Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128 Jiangsu Province, China

^c Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia

^{*} Corresponding author: <u>luowenhai@cau.edu.cn</u>; Ph: +86 18311430503.

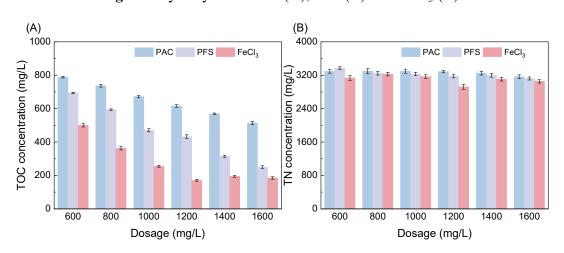
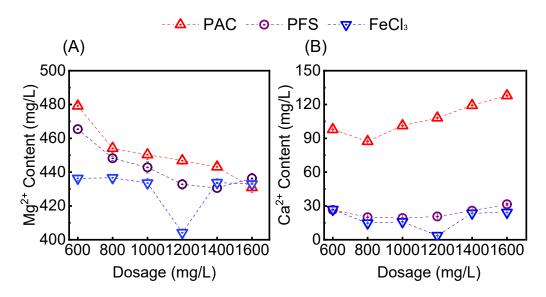



Fig. S1: Hydrolysis of PAC (A), PFS (B) and FeCl₃ (C).

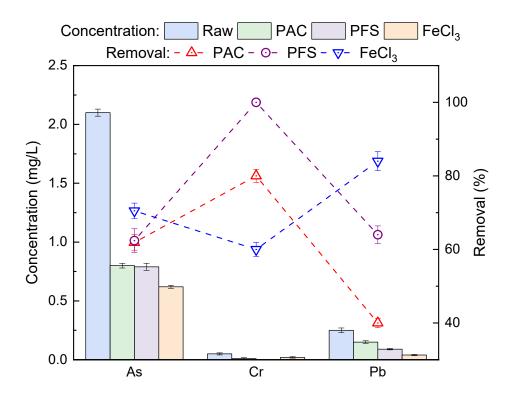

Fig. S2: Effect of coagulation on the concentration of TOC (A) and TN (B) in landfill leachate concentrate. Three coagulants, including PAC, PFS and FeCl₃, were added to leachate concentrate and then mixed rapidly at 250 r/min for 2 min, slowly at 60 r/min for 10 min before natural settlement for approximately 30 min under the room temperature.

Fig. S3: Removal of Mg^{2+} and Ca^{2+} from landfill leachate concentrate via coagulation at different dosages. Experimental conditions were shown in the caption of Fig. S2.

Fig. S4: Effect of coagulation on the pH of landfill leachate concentrate. Experimental conditions were shown in the caption of Fig. S2.

Fig. S5: Effect of coagulation on the removal of heavy metals in landfill leachate concentrate by coagulation and their concentration at 1200 mg/L. Experimental conditions were shown in the caption of Fig. S2.

Element/ Wt (%)	Pristine	Raw	PAC	PFS	FeCl ₃
F	70.1	0.6	35.9		65.7
С	29.9	6.1	24.3		27.2
0		31.1	15.5	38.6	4.5
Na		17.4	5.8	18.1	1.3
Cl		20.5	5.4	16.1	0.6
Ν		11.8	4.2		
K		10.7	2.8	10.9	0.5
Ca		1.1	0.9		
Mg		0.7	0.7	2.0	0.3
Si			3.6	1.0	
S			0.2	1.3	
Fe				5.1	
Al			0.5		

Table S1: Elements onto the pristine and fouled membrane after MD operation for
 landfill leachate concentrate treatment via EDS measurement