Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

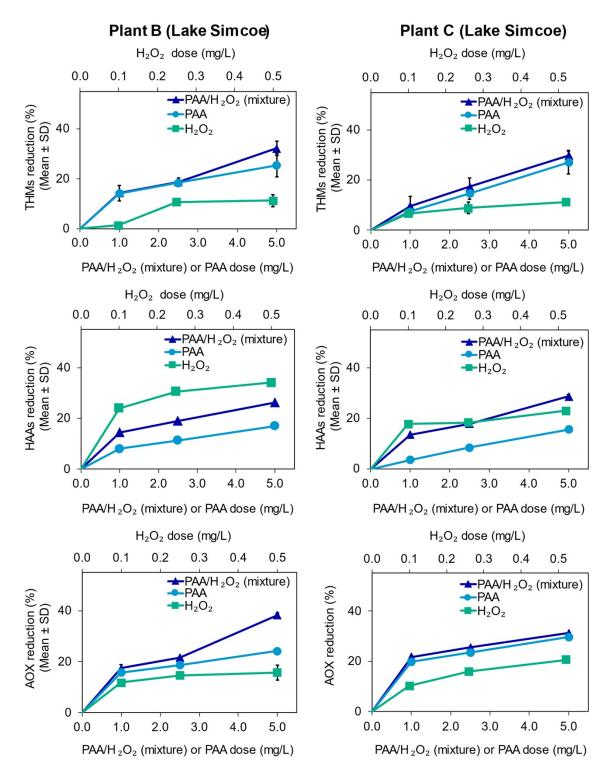
Peracetic Acid to Reduce Disinfection By-product Formation in Drinking Water

Subhajit Mondal^{1,2}, Erin Mackey³, Ron Hofmann¹,

¹Department of Civil & Mineral Engineering, University of Toronto, Ontario, Canada, M5S 1A4

²R.V. Anderson Associates Limited, North York, Ontario, Canada, M2J 4Z8

³Brown and Caldwell, Walnut Creek, California, United States, 94596


Summary

8 pages including 5 figures and 3 tables

1. DBPs monitored

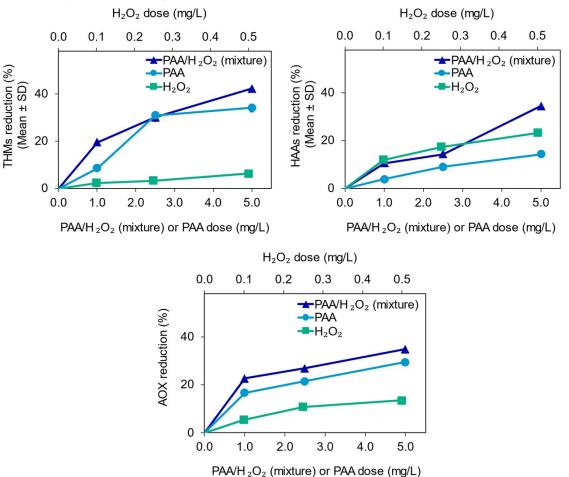

Group	Compounds	Chemical	Retention time in	
		Structure	GC-ECD (in mins)	
	Trichloromethane (TCM)		3.24	
Trihalomethanes (THMs)	Bromodichloromethane (BDCM)	CI Br CI Br	4.72	
	Dibromochloromethane (DBCM)	CI CH Br	8.26	
	Tribromomethane (TBM)	Br CH Br Br	14.24	
Haloacetic acids (HAAs)	Monochloroacetic acid (MCAA)	CI CI CI CI CI CI CI CI CI CI CI CI CI C	8.20	
	Monobromoacetic acid (MBAA)	Br C H ₂ OH	9.98	
	Dichloroacetic acid (DCAA)		10.94	
	Trichloroacetic acid (TCAA)	CI CI CI CI	16.65	
	Bromodichloroacetic acid (BDCAA)	Br CI CI CI	23.04	
Adsorbable				
organic halides	N/A	N/A	N/A	

Table S1: List of DBPs monitored for each of the four waters

2. Text S1. Role of PAA versus H₂O₂

Figure S1: Role of PAA and H₂O₂ on the reduction of THM, HAA and AOX formation potential for Plant B (Lake Simcoe) and Plant C (Lake Simcoe).

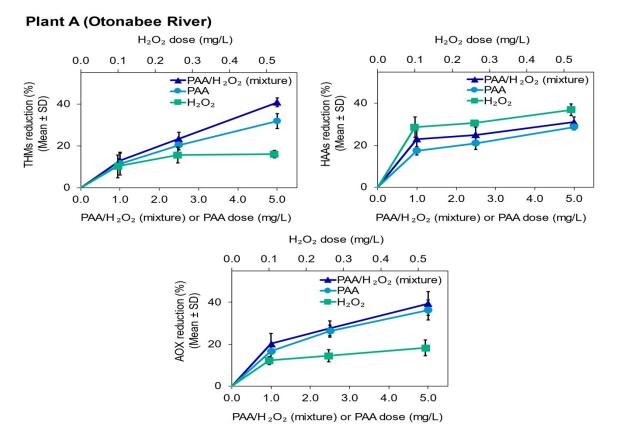
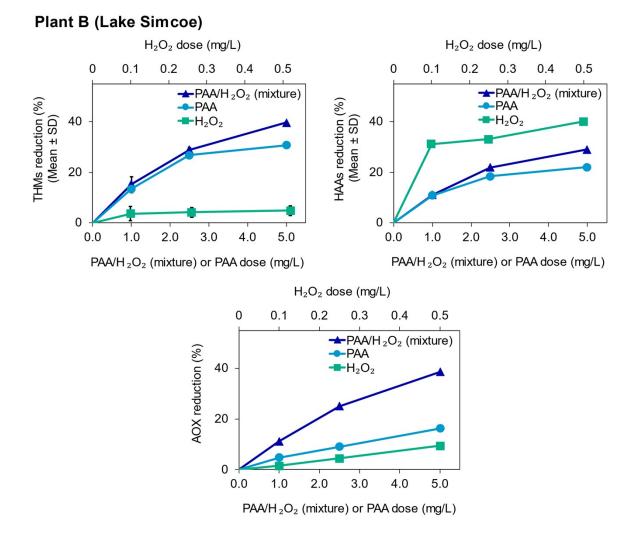

Plant D (Lake Ontario)

Figure S2: Role of PAA and H₂O₂ on the reduction of THM, HAA and AOX formation potential for Plant D (Lake Ontario). The error bars indicate the 95% confidence intervals based on the Student's t-distribution.

3. Text S2. Effect of pH

Figure S3: Comparison of DBP reduction (%) across different pH conditions for Plant B (Lake Simcoe) and Plant D (Lake Ontario).


Figure S4: Comparison of DBP reduction (%) across different pH conditions for Plant A (Otonabee River) under the conditions tested. The error bars indicate the 95% confidence intervals based on the Student's t-distribution.

4. Text S3. Applying PAA/H₂O₂ (mixture) post-filter

Parameter	Plant A	Plant B	
	(Otonabee River)	(Lake Simcoe)	
рН	7.1-7.3	7.2-7.4	
Dissolved organic carbon (mg/L)	2.9-2.94	3.22-3.28	
Turbidity (NTU)	0.054	0.064	
UV ₂₅₄ (cm ⁻¹)	0.064	0.036	
Treatment type	Conventional	Microfiltration	

Table S2: Filtered water quality parameters collected from Plant A (Otonabee River) and

 Plant B (Lake Simcoe)

Figure S5: Impact of 15-minute PAA/H₂O₂ (mixture) treatment on the DBP formation potential (THMs, HAAs and AOX) of filtered water collected from Plant B (Lake Simcoe). The error bars indicate the 95% confidence intervals based on the Student's t-distribution.

5. Effect of PAA/H₂O₂ (mixture), PAA, and H₂O₂ on pH

Table S3: Effect	of PAA/H ₂ O ₂ (mixture)	, PAA and	H ₂ O ₂ doses	on the pH of	different
source waters					

Oxidant	Dose (mg/L)	Plant B	Plant C	Plant D
		(Lake Simcoe)	(Lake Simcoe)	(Lake Ontario)
Raw water ¹	N/A	8.20	8.22	8.20
	1.0	8.04	8.02	7.98
PAA/H ₂ O ₂	2.5	7.86	7.78	7.76
	5.0	7.70	7.62	7.52
	1.0	8.02	8.04	7.94
PAA	2.5	7.88	7.82	7.78
	5.0	7.72	7.64	7.60
	0.1	8.18	8.22	8.18
H ₂ O ₂	0.25	8.18	8.18	8.16
	0.5	8.16	8.18	8.16

¹Raw water pH without addition of any oxidants