1	Cephalexin interaction with biosolids-derived dissolved organic matter:
2	binding mechanism and implications for adsorption by biochar and clay
3	Michael P. Schmidt ¹ *, Daniel J. Ashworth ¹ , Abasiofiok Mark Ibekwe ¹
4	¹ USDA-ARS United States Salinity Laboratory, 450 W. Big Springs Road, Riverside, California, 92507, USA.
5	
6	
7	
8	
0	
9	
10	
11	
11	
12	
13	
14	
15	*Corresponding author:
16	Michael P. Schmidt
17	USDA-ARS
18	United States Salinity Laboratory
19	450 W Big Springs Road
20	Riverside, CA 92507
21	United States
22	Tel.: 951-369-4817
23	Email: mike.schmidt@usda.gov

Table S1. Physicochemical characteristics of biochar and montmorillonite used in adsorption

25 study.

Material	N_2 specific surface area $(m^2 g^{-1})$	Cation exchange capacity (meq 100 g ⁻¹)	%C	%N	Particle size (µm)
Date palm petiole biochar	71.07	1.48	71.03	0.25	<180
SWy-1 ^a	31.82	76.4			1.15 ¹

26 ^a SWy-1 surface area and cation exchange capacity from The Clay Minerals Society (clays.org/sourceclays_data/)

27

Table S2. Basic chemical and optical characteristics of DOM used in experiments. Properties were determined in deionized water. Standard deviations of replicated measurements (n=3) are

30							presented in
31	% C	SUVA ₂₅₄	Fluorescence	Humification	Biological	pН	parentheses.
32		(L mg ⁻¹	index (FI)	index (HIX)	fluorescence	-	
		C = 1			$1 \dots 1 \dots (DIV)$		

32		(L IIIg -	muex (FI)	muex (ПГЛ)	nuorescence	
		C m ⁻¹)			index (BIX)	
33	38.4	1.01	1.7 (0.03)	0.36 (0.01)	1.15 (0.04)	5.78
34	(0.002)	(0.06)				(0.03)
57						

35

36 Table S3. Ryan-Weber fitting parameters for cephalexin-DOM binding at experimental pH37 values.

pН	$\log K_c$	$L_t(\mathbf{M})$	Root-mean-
			square error
4.0	8.48	8.57 • 10 ⁻⁴	4.36 • 10 ⁻²
5.0	7.16	2.48 • 10 ⁻³	4.94 • 10 ⁻²
7.0	5.33	3.99 • 10 ⁻³	2.26 • 10 ⁻²

38

39 Table S4. Ryan-Weber fitting parameters for cephalexin-DOM binding at experimental

40 background ionic strength values and cation charges.

Background ionic strength condition	Background cation	Log K _c	$L_t(\mathbf{M})$	Root-mean- square error
DDIW	N/A	6.00	2.41 • 10 ⁻³	4.29 • 10 ⁻²
I = 0.10 M	Na ⁺	6.41	2.16 • 10 ⁻³	1.99 • 10 ⁻²
I = 0.10 M	Ca ⁺²	5.93	1.78 • 10 ⁻³	4.31 • 10 ⁻²

41

42

43 Figure S1. EEMs of 50 ppm cephalexin collected at a) pH = 4.0, b) pH = 5.0 and c) pH = 7.0.

63 **Figure S2.** Fluorescence intensities versus cephalexin concentration for $[DOM] = 2.5 \text{ mg C } L^{-1}$ 64 in synthetic wastewater at pH = 4.0 (red), 5.0 (yellow), 7.0 (blue) and 8.0 (green). Error bars

65 represent standard deviations of experimental replicates (n=3).

66

- 67 Figure S3. Cephalexin charge and chemical speciation variation with pH. Experimental pH
- 68 values are denoted by the dashed vertical lines. Dissociation constants were determined

69 experimentally by Mrestani et al.²

- 71
- 72

Figure S4. Relationship between $\log K_c$ and pH for cephalexin-DOM binding in a synthetic

- 78 Figure S5. Fluorescence intensities versus cephalexin concentration for $[DOM] = 2.5 \text{ mg C } L^{-1}$
- 79 in ultrapure water (green), I = 0.1 M NaCl (orange) and I = 0.1 M CaCl₂ (brown). Error bars
- 80 represent standard deviations of experimental replicates (n=3).

82

83 References

- M.A. Anderson and P.M. Bertsch, Electrophoretic Mobility and Particle Size of Clays
 Using Laser Doppler Velocimetry-Photon Correlation Spectroscopy, Soil Sci. Soc. Am.
 J., 1993, 57, 1641-1643.
- 87 2. Y. Mrestani, R. Neubert, A. Munk and M. Wiese, Determination of dissociation constants
- of cephalosporins by capillary zone electrophoresis, J. Chromatogr. A, 1998, 803, 273-
- 89 278.