Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology

Electronic Supplementary Information (ESI)

Economic Analysis of Decentralized Water Reuse Systems in Mission Critical Buildings at U.S. Army Installations

Andy Y. Hur^{1,2*}, Martin A. Page¹, Jeremy S. Guest², and Christine M. Ploschke³

- U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory; P.O. Box 9005, Champaign, IL 61826
- ² University of Illinois at Urbana-Champaign, Department of Civil and Environmental Engineering; 205 N. Mathews Ave, Urbana, IL 61801
- Office of the Secretary of the Army for Installation, Energy, and Environment; 110 Army Pentagon, Washington, D.C. 20310

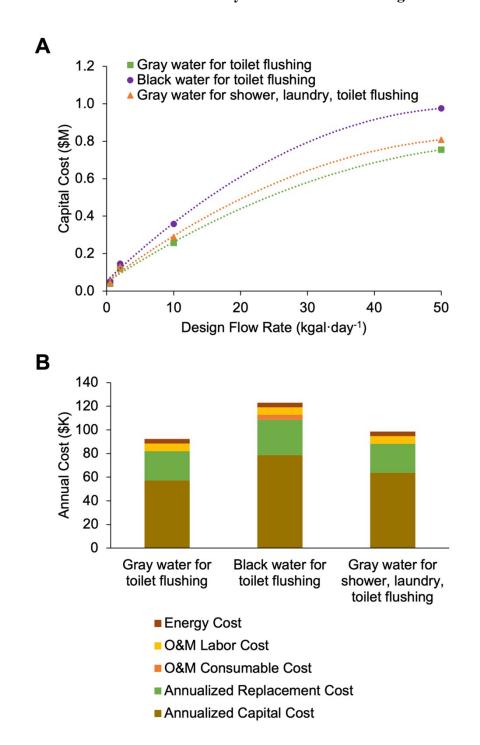

List of Tables

Table ESI-1. Assumptions associated with each of water reuse scenario at mission critical facilities along with values and citations thereof.

<u>List of Figures</u>

Figure ESI-1. Capital cost curve along with annualized costs of decentralized water reuse systems.

Section S1. Cost Functions of Water Reuse Systems at Different Design Scale

Figure ESI-1. (A) Capital cost curve of decentralized water reuse systems at different design flow rate. Green square = Gray water for toilet flushing. Purple circle = Black water for toilet flushing. Orange triangle = Gray water for shower, laundry, and toilet flushing. (B) Annualized water reuse system (28.2 kgal·day⁻¹) costs with 15 years system life and 6% discount rate.

Section S2. Determination of Economic Benefit

S2.1 Life Cycle Cost

The life cycle cost of system can be calculated as follows:

$$LCC = C_{Capital} + \sum_{i=1}^{n} C_{Recurring} \times \left[\frac{1}{(1+d)^{n}} \right]$$
(Equation S1)

S.2.2 Cost Savings

The cost savings associated with water demand offset can be calculated as follows:

$$C_{Saving} = P_{Water} \times \sum_{i=1}^{n} D_{Water Saving} \times \left[\frac{1}{(1+d)^{n}} \right]$$
(Equation S2)

where $^{C_{Saving}}$ is the cost saving in present value (\$), $^{P_{Water}}$ is the unit price of water (\$\cdot \kgal^{-1}\$), $^{D_{Water Saving}}$ is the annual water demand offset (kgal·year⁻¹), d is the discount rate, and n is the number of years between the base date and the occurrence of the cost.

S.2.3 Net Savings

The net savings (\$) is the difference between water cost savings and life cycle cost of system in present value and can be computed as follows:

$$Net Savings = C_{Savings} - LCC$$
(Equation S3)

S.2.4 Return on Investment

The return on investment (ROI) of system can be computed as follows:

$$ROI = \frac{Net \, Savings}{LCC} \times 100$$
 (Equation S4)

where, ^{ROI} is the return on investment of system (%), ^{Net Savings} is the difference between water cost savings and life cycle cost of system (\$), and ^{LCC} is the life cycle cost of system (\$). **Section S3. Uncertainty Modeling and Calculations**

S3.1 <u>Assumption for Uncertain Parameter</u>

Table ESI-1. Assumptions associated with each of water reuse scenario at mission critical facilities along with values and citations thereof.

Assumption	Value	Citation
General		
Treatment system water recovery rate (%)	70	-
Capital cost upper range (\$)	15% from baseline	-
Capital cost lower range (\$)	-15% from baseline	-
O&M costs upper range (\$)	15% from baseline	-
O&M costs lower range (\$)	-15% from baseline	-
Number of Monte Carlo simulations (n)	1000	-
Water reuse for shower, laundry, and toilet flushing at a barracks building		
Water unit price (\$\cdot kgal^{-1})	Triangular (8.5, 10,12)	1
Electricity price (\$\cdot kWh^{-1})	Norm (0.15, 0.011)	2
Water demand (kgal·day-1)	Triangular (28.2, 33.9,	3–5
	39.5)	
Discount rate	Triangular (0.04, 0.06,	6,7
	0.07)	
Membrane replacement period (years)	Triangular (8, 10, 11)	-
Capital cost (\$)	Dependent on building	Vendor quote
	water demand	8,9
O&M costs (\$·year-1)	Dependent on building	Vendor quote
	water demand	8,9
Water reuse for server cooling at a data center		
Blowdown	30%	10
Water unit price (\$\cdot kgal^1)	Triangular (8.5, 10,12)	1
Electricity price (\$\cdot kWh^{-1})	Norm (0.15, 0.011)	2
Water demand (kgal·day-1)	Triangular (88.2, 98,	3,11
	107.8)	
Discount rate	Triangular (0.04, 0.06,	6,7
	0.07)	
Membrane replacement period (years)	Triangular (8, 10, 11)	-
Capital cost (\$)	Dependent on building	Vendor quote
	water demand	8,9
O&M costs (\$·year-1)	Dependent on building	Vendor quote
	water demand	8,9

S.3.2 Spearman's Rank Correlation Coefficient

$$\rho = 1 - \frac{6\sum_{i=1}^{n} [R(x_i) - R(y_i)]^2}{n(n^2 - 1)}$$

(Equation S5)

where ρ is the Spearman's rank correlation coefficient, n is the number of Monte Carlo simulations, x_i is the value of an uncertain parameter in simulation i, y_i is the output (system return on investment) for simulation i, and $R(\cdot)$ is the relative rank of x_i and y_i across the n simulations.

References

- (1) Department of the Army. Army Energy and Water Reporting System (AEWRS) Water Rate Report; Office of the Assistant Chief of Staff for Installation Management (OACSIM), 2016.
- (2) U.S. Bureau of Labor Statistics. Electricity per KWH in U.S. City Average, Average Price, Not Seasonally Adjusted. https://data.bls.gov/timeseries/APU000072610?amp%253bdata_tool=XGtable&output_vie w=data&include_graphs=true (accessed 2022-12-28).
- (3) Jenicek, E.; Garfinkle, N.; Hur, A.; Oberg, B.; Bartholomew, N.; Buchhorn, S.; Chen, K.; Miller, L.; Mithaiwala, M. *Water Use Intensity at U.S. Army Facilities : An Investigation into Factors That Influence Potable Water End Use*; Construction Engineering Research Laboratory (U.S.), 2018. https://doi.org/10.21079/11681/28040.
- (4) McMordie Stoughton, K.; Williamson, J.; Boyd, B.; Cabe, J.; Brown, S.; Dixon, D.; Loper, S.; Elliott, D.; Wendel, E.; Rosa, M. D. L.; Giever, E.; Russell, B. *Army Net Zero Water Balance and Roadmap Programmatic Summary*; Pacific Northwest National Laboratory for the United States Army, 2013.
- (5) Jenicek, E. M.; Garfinkle, N. W.; Curvey, L. E.; Case, M. P.; Choi, M.; Stumpf, A. L. Methods of Estimating Water End Use at US Army Installations. *Journal American Water Works Association* **2016**, *108* (2). https://doi.org/10.5942/jawwa.2016.108.0004.
- (6) Office of Management and Budget. M-22-13. 2022 Discount Rates for OMB Circular No. A-94.
- (7) Office of Management and Budget. Circular A-94. Guidelines and Discount Rates for Benefit-Cost Analysis of Federal Programs.
- (8) Jenicek, E. M.; Page, M.; Hur, A.; Ahern, D.; Garfinkle, N. *Integrated Water Planning Through Building Level Cascade of Water Use*; ESTCP Project #EW-201155, Energy and Water Projects; SERDP/ESTCP, 2018.
- (9) Schoen, M. E.; Jahne, M. A.; Garland, J. A Risk-Based Evaluation of Onsite, Non-Potable Reuse Systems Developed in Compliance with Conventional Water Quality Measures. *Journal of Water and Health* **2020**, *18* (3), 331–344. https://doi.org/10.2166/wh.2020.221.
- (10) Plata, S. L.; Devenport, C. L.; Miara, A.; Sitterley, K. A.; Evans, A.; Talmadge, M.; Van Allsburg, K. M.; Kurup, P.; Cox, J.; Kerber, S.; Howell, A.; Breckenridge, R.; Manygoats, C.; Stokes-Draut, J. R.; Macknick, J.; Childress, A. E. Zero Liquid Discharge and Water

- Reuse in Recirculating Cooling Towers at Power Facilities: Review and Case Study Analysis. *ACS EST Eng.* **2022**, *2* (3), 508–525. https://doi.org/10.1021/acsestengg.1c00377.
- (11) Mytton, D. Data Centre Water Consumption. *npj Clean Water* **2021**, *4* (1), 11. https://doi.org/10.1038/s41545-021-00101-w.