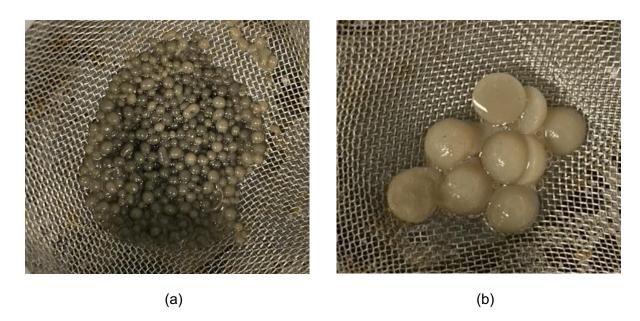
Polyethylene glycol as a robust, biocompatible encapsulant


² for two-stage treatment of food and beverage wastewater

3		
4	Gretchen M. Gutenberger, Olivia M. Holgate, William A. Arnold, Jeremy S. Guest, Paige J.	
5	Novak	
6		
7		
8		
9	Supporting Information	
10		
11		

12 Methodology

Table S1. Formulation of high-strength synthetic wastewater in DI water¹

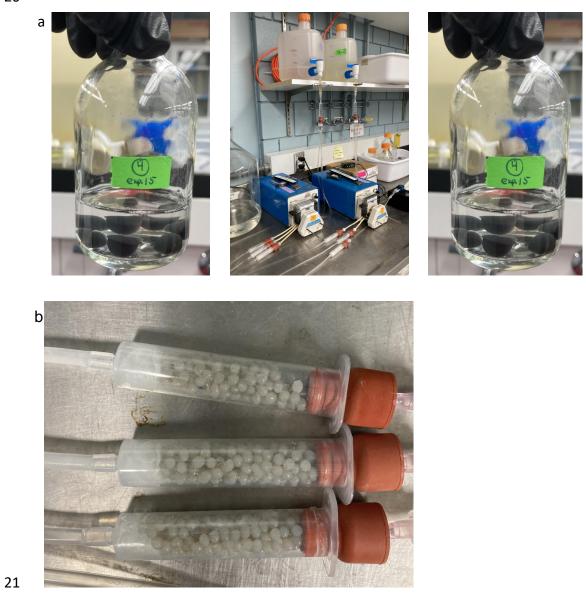
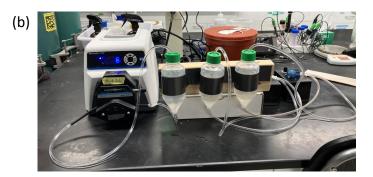
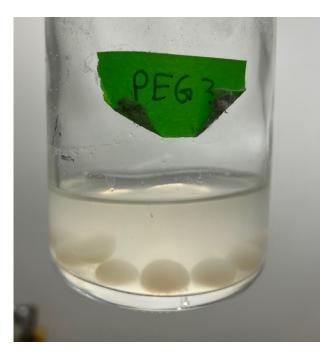
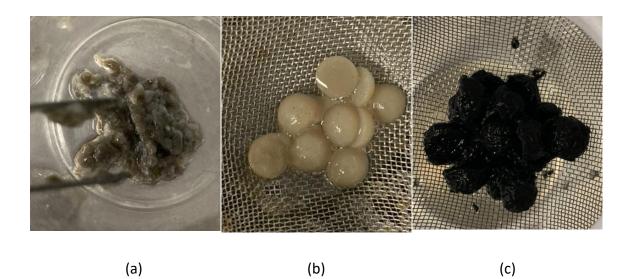

Reagent	Concentration (g/L)
Polysorbate	0.96
Gelatin	3.75
Starch	1.75
Casamino acids	0.08
Yeast extract	0.08
Ammonium chloride	0.15
Sodium bicarbonate	0.10
Sodium phosphate	0.03
Potassium phosphate	0.03
Magnesium chloride	0.04
Calcium chloride	0.06

Figure S1. Alginate beads (a) and PEG beads (b) containing fermentative bacteria were approximately 2


mm and 10 mm in diameter, respectively.

- **Figure S2.** Photos of (a) the three-stage system of reactors used to assess bead integrity, with a close-up
- 23 (b) of alginate beads in the 7-mL flow-through reactor. Data collection from the first and third stages
- *included intact bead count, encapsulated biomass concentration as protein, and gas production.*





- 27 Figure S3. Caged (a) and upflow (b) second-stage reactors were used to assess the impact of reactor
- 28 conditions on the longevity of PEG beads encapsulating PAC-supported biofilms in a three-stage
- 29 experimental set-up. Stirred (c) and impeller (d) reactor experiments were also performed with PEG
- 30 beads encapsulating PAC-supported biofilms. Note: the tea balls shown in panel d were not filled with

- 31 encapsulated organisms; they were simply placed in the jar tester to determine if this set-up would work
- *in future experiments.*
- **Results and Discussion**

- *Figure S4.* After 10 months in shaken batch reactors, PEG beads have retained their shape and show no
- 38 physical signs of deterioration.

- 41 Figure S5. Alginate beads (a), PEG beads encapsulating suspended biomass (b), and PEG beads
- 42 encapsulating PAC-supported biofilms (c) after one month of operation in the three-stage reactor set-up,
- 43 *photographed after the third stage.*

(a)

(b)

- 44 *Figure S6.* After two weeks in a stirred reactor with heat, PEG beads encapsulating PAC-supported
- 45 biofilms completely disintegrated (a), while after two weeks in an impeller-stirred reactor, PEG beads
- 46 encapsulating PAC-supported biofilms broke into small pieces (b). Note: the tea ball shown in panel b

was not filled with encapsulated organisms; it was simply placed in the jar tester to determine if this setup would work in future experiments.

51 References

- 52 1. K. Zhu, C. W. Davis, P. J. Novak and W. A. Arnold, *Bioresource Technology Reports*, 2020,
- , 100451.