Supplementary Information

- Application of psychrotolerant quorum quenching Planococcus versutus sp.
- 4 L10.15^T to membrane bioreactors for biofouling control at low temperatures
- 6 Sojin Mina, Hosung Leea, Joowan Lima, Sang Hyun Leeb, Seungjin Leec, Kwang-Ho Chood,
- 7 Chung-Hak Lee^e, and Pyung-Kyu Park^{a,*}
- 9 a Department of Environmental and Energy Engineering, Yonsei University, Wonju, Gangwon-
- 10 do 26493, Republic of Korea
- 11 b Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis,
- 12 MN 55455, U.S.A.

1

2

5

8

- ^cDepartment of Chemistry, Georgia Gwinnett College, Lawrenceville, GA 30043, U.S.A.
- ¹⁴ Department of Environmental Engineering, Kyungpook National University, Daegu 41566,
- 15 Republic of Korea
- ^e School of Chemical and Biological Engineering, Seoul National University, Seoul 08826,
- 17 Republic of Korea

20

21

- 18 *Corresponding author.
- 19 E-mail address: pkpark@yonsei.ac.kr (P.-K. Park)

Table S1 Operating conditions of MBRs

Parameter	Value
Solid retention time (SRT)	30 d
Hydraulic retention time (HRT)	6 h
Reactor temperature	10°C
рН	7.20 (±1.0)
Dissolved oxygen (DO)	5.75 (±0.75) mg/L

Table S2 Composition of synthetic wastewater

Component	Concentration [mg/L]
Glucose	160
Yeast extract	16
Bacteriological peptone	120
$(NH_4)_2 \cdot SO_4$	104
$\mathrm{KH_{2}PO_{4}}$	33
$MgSO_4 \cdot 7H_2O$	32
$MnSO_4 \cdot 4H_2O$	2.8
FeCl ₂ ·6H ₂ O	0.1
$CaCl_2 \cdot 2H_2O$	3.2
NaHCO ₃	315

27 Table S3 C8-HSL degradation rates by L10.15^T- beads at 10, 17, and 25°C during the first 15

28 min

•	C8-HSL degradation rate (h ⁻¹)
10°C	2.410
17°C	0.410
25°C	0.258

Table S4 Live/dead cell ratios in L10.15^T- and BH4-beads (n=3)

	Live/dead cell ratio
L10.15 ^T	1.39 (±0.12)
BH4	1.52 (±0.19)

32 Table S5 Chemical oxygen demand (COD) and mixed liquor suspended solid (MLSS) in

33 MBRs

	L10.15 ^T -MBR	BH4-MBR
Feed COD [mg/L]	303 (±17)	295 (±24)
Broth COD [mg/L]	48 (±8)	53 (±14)
Permeate COD [mg/L]	28 (±4)	29 (±7)
MLSS [mg/L]	5,201 (±204)	5,268 (±180)