Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2024

A combined experimental and computational approach to unravel degradation mechanisms in electrochemical wastewater treatment

Sara Feijoo¹, Simona Baluchová², Mohammadreza Kamali¹, Josephus G. Buijnsters², and Raf Dewil^{1,3,*}

¹KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, Jan Pieter de Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium

 2 Delft University of Technology, Department of Precision and Microsystems Engineering, Mekelweg 2, 2628 CD Delft, The Netherlands 3 University of Oxford, Department of Engineering Science, Parks Road, Oxford, OX1 3PJ, United Kingdom

* Corresponding author: Raf Dewil, raf.dewil@kuleuven.be

Supplementary Material

A Kinetic model & Design of experiments

Figure A.1: Simultaneous degradation of 10 μ M BA and NB in 10 mM Na₂SO₄ solution at 0.09 A.

Exp.	Operating conditions	Model implementation	Calculated parameter
3	BA photodegradation in SO_4^{2-} and NO_3^{-} medium (no current applied).	$k_{BA,3} = \mid \lambda_{NO_3^-} \mid$	$\mid \lambda_{NO_{3}^{-}} \mid$
4	Electrogeneration of H_2O_2 and $S_2O_8^{2-}$ in SO_4^{2-} and NO_3^{-} medium without BA (current applied).	Not applicable	$[{\rm H_2O_2}],[{\rm S_2O_8}^{2-}]$
8	BA degradation in pure water with methanol as scavenger for $^{\bullet}OH$ radicals (current applied). Sodium acetate was added to increase the conductivity.	$k_{BA,8} = \mid A_{ox} \mid + \mid ROS \mid$	$\mid A_{ox} \mid + \mid ROS \mid$
11	BA degradation in SO ₄ ²⁻ medium with tert-butanol as scavenger for •OH radicals (current applied).	$k_{BA,11} = SO_4^{\bullet-} + A_{ox} + ROS $	$\mid SO_4^{\bullet-} \mid$
12	BA degradation in SO_4^{2-} medium (current applied).	$k_{BA,12} = SO_4^{\bullet-} + A_{ox} + ROS + S_{\bullet OH,SO_4^{\bullet-}} $	$\mid S_{\bullet OH,SO_4^{\bullet -}}\mid$
13	BA degradation in NO_3^- medium (current applied).	$k_{BA,13} = \mid A_{ox} \mid + \mid ROS \mid + \mid \lambda_{NO_{3}^{-}} \mid + \mid S_{\bullet OH,NO_{3}^{-}} \mid$	$\mid S_{\bullet OH,NO_{3}^{-}}\mid$
Target	BA degradation in SO_4^{2-} and NO_3^{-} medium (current applied).	$ \begin{split} k_{obs,BA} = \mid SO_{4}^{\bullet-} \mid + \mid A_{ox} \mid + \mid ROS \mid + \mid \lambda_{NO_{3}^{-}} \mid + \\ + \mid S_{\bullet OH,SO_{4}^{\bullet-}} \mid + \mid S_{\bullet OH,NO_{3}^{-}} \mid + \mid S_{SO_{4}^{\bullet-},NO_{3}^{-}} \mid \end{split} $	$\mid S_{SO_{4}^{\bullet^{-}},NO_{3}^{-}}\mid$

Table A.1: Simplified experimental and computational approach to unravel the distribution of degradation mechanisms in scenarios A to D.

Table A.2: Simplified experimental and computational approach to unravel the distribution of degradation mechanisms under the Taguchi design.

Exp.	Operating conditions	Model implementation	Calculated parameter
4	Electrogeneration of H_2O_2 and $S_2O_8^{2-}$ in SO_4^{2-} medium without BA (current applied).	Not applicable	$[H_2O_2], [S_2O_8^{2-}]$
8	BA degradation in pure water with methanol as scavenger for \bullet OH radicals (current applied). Sodium acetate was added to increase the conductivity.	$k_{BA,8} = \mid A_{ox} \mid + \mid ROS \mid$	$\mid A_{ox} \mid + \mid ROS \mid$
11	BA degradation in SO ₄ ²⁻ medium with tert-butanol as scavenger for •OH radicals (current applied).	$k_{BA,11} = SO_4^{\bullet-} + A_{ox} + ROS $	$\mid SO_4^{\bullet-} \mid$
Target	BA degradation in SO_4^{2-} medium (current applied).	$k_{obs,BA} = SO_4^{\bullet-} + A_{ox} + ROS + S_{\bullet OH,SO_4^{\bullet-}} $	$\mid S_{\bullet OH,SO_4^{\bullet -}}\mid$

B Electrode characterisation

Electrode	$\begin{array}{c} {\bf Electroactive\ surface\ area}\\ ({\bf cm}^2) \end{array}$	$egin{array}{llllllllllllllllllllllllllllllllllll$
Nb/BDD	57.1	$1.52 \cdot 10^{-5}$
Si/BDD	46.6	$1.52 \cdot 10^{-5}$
Nb/BDD-Ag	170.1	$1.52 \cdot 10^{-5}$

 Table B.1: Electrode characterisation results.

Figure B.1: AFM topographic and profile scans (10x10 μ m²) of commercial (a),(c) Nb/BDD and (b),(d) Si/BDD electrodes.

Figure B.2: Elemental mapping of the Nb/BDD-Ag electrode based on EDS analysis.

(d) t = 4 h. (e) t = 10 h.

Figure B.3: SEM images of electrodeposited Nb/BDD-Ag during a 10-h stability test at 90 mA in 50 mM Na_2SO_4 .

Figure B.4: SEM images of electrodeposited Nb/BDD-Ag during a 10-h stability test at 180 mA in 10 mM Na_2SO_4 .

Figure B.5: Blank stability tests of a freshly prepared Nb/BDD-Ag electrode.

Figure B.6: Silver particles density distribution during stability tests at (a) 90 mA in 50 mM Na₂SO₄ and (b) 180 mA in 10 mM Na₂SO₄.

C Distribution of degradation mechanisms: Influence of operating conditions on a commercial BDD

Parameter		tant (h^{-1})		
	Scenario A	Scenario B	Scenario C	Scenario D
$ SO_4^{\bullet-} $	0.107	0.075	-0.084	0.107
$ A_{ox} + ROS $	0.177	0.177	0.301	0.177
$ S_{\bullet OH,SO_4}^{\bullet-} $	-0.022	0.102	0.152	-0.022
$ S_{SO_4^{\bullet^-},NO_3^-} $	-0.074	-0.151	0.204	-0.068
$ S_{\bullet OH, NO_3} $	0.023	0.021	-0.087	-0.057
$ \lambda_{NO_3} $	0.002	0.004	0.004	0.031
$ S_2 O_8^{2^-} $	0.000	0.000	0.000	0.000
$ H_2O_2 $	0.000	0.000	0.000	0.000
k _{obs,BA}	0.212	0.228	0.490	0.168

Table C.1: Insights into the BA degradation mechanisms through scenarios A to D.

 Table C.2: Comparative analysis of scenarios A to D.

Cases	Change	$k_{obs,BA}$	$ SO_4^{\bullet-} $	$ A_{ox} + ROS $	$ S_{\bullet_{OH,SO_4}\bullet^-} $	$ S_{SO_4^{\bullet-},NO_3^{-}} $	$ S_{\bullet_{OH,NO_3}^-} $
A & B	$\uparrow \mathrm{SO}_4{}^{2-}$	+7%	-30%	\approx	+562%	-103%	-10%
В & С	\uparrow Current	+115%	-213%	+70%	+48%	+235%	-520%
A & D	$\uparrow \mathrm{NO}_3^-$	-21%	\approx	~	\approx	+8%	-346%

 $\label{eq:table C.3: Observed experimental results during the degradation of BA with the commercial Nb/BDD electrode.$

Scenario	$k_{obs,BA} \ (\mathbf{h}^{-1})$	${{{{\mathbf{S}}_{2}}{{\mathbf{O}}_{8}}^{2-}}}$ formation (mM)	H_2O_2 formation (mM)	pH change	Initial COD (mg $O_2 L^{-1}$)	Limiting current (mA)
А	0.212	0.096 ± 0.006	0.084 ± 0.001	2.12 ± 0.38	5.97 ± 0.17	6.28
В	0.228	0.121 ± 0.003	0.108 ± 0.006	2.44 ± 0.37	6.43 ± 0.15	6.76
\mathbf{C}	0.490	0.211 ± 0.006	0.205 ± 0.002	2.45 ± 0.05	6.43 ± 0.15	6.76
D	0.168	0.083 ± 0.001	0.074 ± 0.002	2.27 ± 0.41	7.79 ± 1.59	8.19

Figure C.1: Degradation profiles of BA in the experiments defined in Table A.1 for scenarios A to D.

D Distribution of degradation mechanisms: Taguchi optimisation

Parameter	Rate constant (h^{-1})						
	Taguchi 1	Taguchi 2	Taguchi 3	Taguchi 4	Taguchi 5	Taguchi 6	
$ SO_4^{\bullet-} $	0.107	-0.084	-0.053	-0.126	0.115	0.116	
$ A_{ox} + ROS $	0.177	0.301	0.237	0.335	0.021	0.053	
$ S_{\bullet OH,SO_4}^{\bullet-} $	-0.022	0.152	0.115	0.127	0.010	0.036	
$ S_2 O_8^{2-1} $	0.000	0.000	0.000	0.000	0.000	0.000	
$ H_2O_2 $	0.000	0.000	0.000	0.000	0.000	0.000	
$k_{obs,BA}$	0.262	0.368	0.299	0.337	0.146	0.205	

Table D.1: Insights into the BA degradation mechanisms under the Taguchi design.

Table D.2: Observed experimental results during the degradation of BA under the Taguchi design.

Taguchi test	$egin{array}{c} \mathbf{k}_{obs,BA} \ \mathbf{(h}^{-1}) \end{array}$	${{{{\mathbf{S}}_{2}}{{\mathbf{O}}_{8}}^{2-}}}$ formation (mM)	H_2O_2 formation (mM)	pH change	$\begin{array}{c} \textbf{Initial COD} \\ \textbf{(mg } \mathbf{O}_2 \ \mathbf{L}^{-1} \textbf{)} \end{array}$	Limiting current (mA)
1	0.262	0.035 ± 0.001	0.025 ± 0.002	1.51 ± 0.30	8.07 ± 0.37	8.48
2	0.368	0.132 ± 0.002	0.108 ± 0.005	2.14 ± 0.37	9.59 ± 0.16	10.08
3	0.299	0.012 ± 0.004	0.005 ± 0.002	2.55 ± 0.46	9.59 ± 0.16	8.22
4	0.337	0.020 ± 0.003	0.015 ± 0.001	1.57 ± 0.33	8.07 ± 0.37	6.92
5	0.146	No detection	No detection	-0.58 \pm 0.02	9.59 ± 0.16	29.99
6	0.205	No detection	No detection	0.92 ± 0.27	8.07 ± 0.37	25.24

Table D.3: Insights into the influence of the optimal experimental conditions (i.e., electrode type, current
applied, and initial sulfate concentration) attained via ANOVA on the selected Taguchi optimisation
targets, that is, aiming to maximise the degradation via sulfate radicals, synergy between hydroxyl
and sulfate radicals, and direct oxidation and reactive oxygen species as well as the overall BA
degradation rate constant.

Parameter	\mathbf{DoF}	$\mathbf{Sum}~\mathbf{Sq}$	Mean Sq	Contribution	Optimum			
Sulfate radicals								
Electrode type	2	0.042	0.021	70.6%	Nb/BDD-Ag			
Current applied	1	0.012	0.012	19.4%	180 mA			
Initial sulfate concentration	1	0.006	0.006	10.0%	$50 \mathrm{~mM}$			
Total	4	0.059	-	100%	-			
	Synet	rgy hydroxyl _/	sulfate radice	ıls				
Electrode type	2	0.010	0.005	52.1%	Si/BDD			
Current applied	1	0.008	0.008	40.2%	180 mA			
Initial sulfate concentration	1	0.001	0.001	7.8%	$50 \mathrm{~mM}$			
Total	4	0.019	-	100%	-			
Din	rect oxid	lation and re	active oxygen	species				
Electrode type	2	0.070	0.035	84.5%	Si/BDD			
Current applied	1	0.011	0.011	12.9%	180 mA			
Initial sulfate concentration	1	0.002	0.002	2.6%	$10 \mathrm{~mM}$			
Total	4	0.083	-	100%	-			
BA degradation rate constant								
Electrode type	2	0.027	0.013	79.4%	Si/BDD			
Current applied	1	0.007	0.007	20.5%	180 mA			
Initial sulfate concentration	1	0.000	0.000	0.2%	$50 \mathrm{~mM}$			
Total	4	0.033	-	100%	-			

DoF: degrees of freedom, Sum Sq: sum of squares, Mean Sq: mean of squares.

Figure D.1: Degradation profiles of BA in the experiments defined in Table A.2 under the Taguchi design.

Figure D.2: Taguchi results when maximising the contribution of multiple degradation mechanisms (i.e., sulfate radicals, synergy between hydroxyl and sulfate radicals, and direct oxidation and reactive oxygen species) as well as the BA degradation rate constant. Optimum levels per parameter and maximisation target are highlighted in blue.

E Literature review

Initial BA	Electrode	${f Total}\ {f area}\ ({f cm}^2)$	Anolyte composition	Electrical parameters	$\begin{array}{c} {\rm Degradation} \\ {\rm rate\ constant} \\ {\rm (h^{-1})} \end{array}$	$\begin{array}{c} {\bf BA \ removed} \\ {\bf per \ hour} \\ ({\rm mg \ L^{-1}}) \end{array}$	Source	Comments
$10~\mu{\rm M}$	Si/BDD	96	$50 \text{ mM Na}_2\text{SO}_4$	180 mA	0.366	0.4	Our study	Optimum BA degradation
$10~\mu{\rm M}$	Nb/BDD	64	$10 \text{ mM Na}_2\text{SO}_4$	90 mA	0.262	0.3	Our study	Taguchi 1
$10~\mu{\rm M}$	Nb/BDD	64	$50 \text{ mM Na}_2\text{SO}_4$	180 mA	0.368	0.4	Our study	Taguchi 2
$10~\mu{\rm M}$	Si/BDD	96	$50 \text{ mM Na}_2\text{SO}_4$	90 mA	0.299	0.3	Our study	Taguchi 3
$10~\mu{\rm M}$	Si/BDD	96	$10 \text{ mM Na}_2\text{SO}_4$	180 mA	0.337	0.3	Our study	Taguchi 4
$10~\mu{\rm M}$	Nb/BDD-Ag	64	$50 \text{ mM Na}_2\text{SO}_4$	90 mA	0.146	0.2	Our study	Taguchi 5
$10~\mu{\rm M}$	Nb/BDD-Ag	64	$10 \text{ mM Na}_2\text{SO}_4$	180 mA	0.205	0.2	Our study	Taguchi 6
150 mg L^{-1}	BDD	70	$50 \text{ mM Na}_2\text{SO}_4$	18 A	-	39.0	[1]	Flow cell, initial pH 3.8
150 mg L^{-1}	BDD	70	$50 \text{ mM Na}_2\text{SO}_4$	18 A	-	13.0	[1]	Flow cell, initial pH 10
$10 \mathrm{~mM}$	BDD	10	400 mM Na ₂ SO ₄ , 100 mM NaH ₂ PO ₄ , 100 mM Na ₂ HPO ₄	2.25 V (2.5 mA cm ⁻²)	-	341.9	[2]	Flow cell, initial pH 6
50 mg L^{-1}	PbO_2	-	$100 \text{ mM Na}_2\text{SO}_4$	150 mA cm^{-2}	0.0259	1.3	[3]	Different electrode

 ${\bf Table \ E.1:} \ {\rm Comparison \ with \ previous \ studies \ on \ BA \ degradation.}$

References

- Velegraki T, Balayiannis G, Diamadopoulos E, Katsaounis A, Mantzavinos D. Electrochemical oxidation of benzoic acid in water over boron-doped diamond electrodes: Statistical analysis of key operating parameters, kinetic modeling, reaction by-products and ecotoxicity. Chem Eng J. 2010;160(2):538-48.
- [2] Arts A, van den Berg KP, de Groot MT, van der Schaaf J. Electrochemical oxidation of benzoic acid and its aromatic intermediates on boron doped diamond electrodes. Curr Res Green Sustain Chem. 2021;4:100217.
- [3] He Z, Hayat MD, Huang S, Wang X, Cao P. PbO₂ electrodes prepared by pulse reverse electrodeposition and their application in benzoic acid degradation. J Electroanal Chem. 2018;812:74-81.