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Abstract 

The increasing prevalence of Total Dissolved Solids (TDS), Cl-, SO4
2-, total suspended solids 

(TSS), BOD and COD in industrial effluent necessitates pioneering electrochemical approaches 

for efficient removal. Synthetic industrial wastewater (SWW) as well as Tannery industrial 

processing wastewater (TWW) collected, its studies explored the synergistic optimization of 

current density (CD), anolyte, and cathode compartment effluent volume ratio selection to 

enhance TDS and other toxic effluents removal efficiency where the time not exceed 8h.  The 

Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology.
This journal is © The Royal Society of Chemistry 2024

https://www.linkedin.com/in/ramesh-duraisamy-09451419/overlay/about-this-profile/


electrochemical ion exchange batch type recirculation reactor (EIR) approach was examined 

with the help of ruthenium oxide coated titanium (Ru2O/Ti) as anode and stainless steel (SS) as a 

cathode which was separated by a middle compartment. Utilizing three compartments setup as an 

electrochemical cell batch type recirculation design, we investigated the impact of varying 

current densities on TDS removal rates and power consumption. In these EIR compartments 

constructed with the anion exchange membrane (AEM- NEOSEPTA) and the cationic exchange 

resin (CER- AMBERLITE  IR 120) where fixed in which SWW / TWW effluent has allowed to 

flow and recirculation during the reactor operating time. The SWW has been treated with various 

current densities such as 20, 40, 60, 80 and 90 mA / cm2
.  Maximum removal of Cl- (93%), SO4

2- 

(93%), TSS (93%), TDS (93%), BOD5 (93%), and COD (93%), were achieved at the 1:2 

optimum volume ratio with CD at 40 mA / cm2. Our finding reveals such as optimal current 

density range, balancing removal efficiency and energy consumption of 0.9682 KWhr / Kg. The 

finding indicated that under the optimized conditions, maximum removal efficiencies of Cl-, 

SO4
2-, TSS, TDS, BOD5 and COD were 95%, 89%, 89%, 83%, 92% and 89% respectively from 

TWW. The optimized system demonstrates superior efficiency in reducing TDS levels, 

highlighting the significance of parameter tuning in the electrochemical TDS removal process in 

tannery high saline effluent. This research contributes to the development of sustainable water 

treatment strategies by presenting a comprehensive approach to enhance TDS removal through 

the systematic optimization of key operational parameters. The insights gained from this study 

can inform the design and implementation of electrochemical systems for TDS-laden effluent 

treatment, offering a practical pathway toward more efficient and environmentally conscious 

water remediation practices. 
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Fig. 1: Schematic representation of EIR setup of SWW / TWW effluent treatment process.



Fig. 2: Effectiveness of time in the EIR process influences the removal efficiencies of pollutants 

under 1: 1 (v/v) ratio of effluent at the anolyte and catholyte tank respectively, applied current 

density at 40 mA cm-2. The error bars in the results indicate a deviation of ± 1 standard deviation 

from the mean of triplicate data.



Fig. 3: Effectiveness of time in the EIR process influences the removal efficiencies of pollutants 

under 1: 2 (v/v) ratio of effluent at the anolyte and catholyte tank respectively, applied current 

density at 40 mA cm-2. The error bars in the results indicate a deviation of ±1 standard deviation 

from the mean of triplicate data.



Fig. 4: Effectiveness of time in the EIR process influences the removal efficiencies of pollutants 

under 1: 3 (v/v) ratio of effluent at the anolyte and catholyte tank respectively, applied current 

density at 40 mA cm-2. The error bars in the results indicate a deviation of ±1 standard deviation 

from the mean of triplicate data.



Fig. 5: Varying the CD impacts the efficiency of removing pollutants under 1: 1 (v / v) volume 

ratio of SWW flow at the anolyte and catholyte tank with respect to optimum time (2hours). The 

error bars in the results represent a deviation of ±1 standard deviation from the mean of triplicate 

data.



Fig. 6: Varying the CD impacts the efficiency of removing pollutants under 1: 2 (v / v) volume 

ratio of SWW flow at the anolyte and catholyte tank with respect to optimum time (2hours). The 

error bars in the results represent a deviation of ±1 standard deviation from the mean of triplicate 

data.



Fig. 7: Varying the current density (CD) impacts the efficiency of removing pollutants under 1: 3 

(v / v) ratio of effluent flow at the anolyte and catholyte tank with respect to optimum time 

(2hours). The error bars in the results represent a deviation of ± 1 standard deviation from the 

mean of triplicate data.



Fig. 8 (a). pH value of SWW at AE tank



Fig. 8 (b) pH value of SWW at CE tank

Fig. 8 (a). pH value of SWW at AE tank and (b) pH value of SWW at CE tank : optimum SWW 

volume ratio (1:2) and varying applied CDs (mA cm-2)



Fig. 9 Removal of effluent efficiency vs various ratio (v / v) of SWW at AE (36 ml / min) & CE 

tank (15 ml / min) at optimized CD (40 mA cm-2) and time (2hours) at the recirculation flow 

rate. The error bars in the results represent a deviation of ±1 standard deviation from the mean of 

triplicate data.



Fig. 10. a) TWW collected from industry22



Fig 10 b)

Fig. 10. a) TWW collected from industry 22 (b) Removal efficiency vs various ratio of TWW at 

AE (36 ml / min) & CE tank (15 ml / min) at optimized CD (40 mA cm-2) and time (2hours) at 

the recirculation flow rate. The error bars in the results represent a deviation of ±1 standard 

deviation from the mean of triplicate data.
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