Text S1. chemicals

Potassium dihydrogen phosphate(KH₂PO₄) was purchased from Tianjin Tian-li Chemical Reagent Co, LTD. Tert-butanol (TBA, C₄H₁₀O) was purchased from Sinopharm Group Chemical Reagent Co, LTD. Furfuryl alcohol (FFA, C₅H₆O₂) and terephthalic acid (PTA, C₈H₆O₄) are purchased from Shanghai Maclin Biochemical Technology Co, LTD. P-benzoquinone (p-BQ, C₆H₄O₂) was purchased from Aladdin's reagent platform. N, N dimethylformamide (DMF, C₃H₇NO), anhydrous ethanol (EtOH, C₂H₅OH), 5, 5-dimethyl-1-pyrroline n-oxide (DMPO) and 2, 2, 6, 6tetramethylpiperidine (TEMP) were purchased from Tianjin Fuyu Fine Chemical Co, LTD. Hydroxylamine hydrochloride, acetonitrile, and glacial acetic acid were purchased from Sinopharm Chemical Reagent Co.

Text S2 Characterizatio

Liquid chromatography-mass spectrometry (LC-MS, Agilent 1200, America) was conducted to analysis the concentration of residual TC and identify the intermediates of TC degradation. A reverse phase Hypersil C-18 column (4.6 mm×150 mm, i.d., 5 μ m) was equipped and the maximum absorption wavelength was 358 nm. The flow rate of mobile phase (0.01 mol/L oxalic acid: acetonitrile: methanol = 70:20:10, v:v:v) was 1 mL/min and the injection volume was 20 μ L at 25 °C.

The flow rate of mobile phase (0.01 mol/L oxalic acid: acetonitrile: methanol = 70:20:10, v:v:v) was 1 mL/min and the injection volume was 20 μ L at 25 °C. The concentrations of PMSO and PMSO₂ were monitored using high performance liquid chromatography (HPLC, UltiMateTM3000, Japan) equipped with a C18 column (4.6 mm × 250 mm × 5 μ m) and a UV detector at 215 nm. The mobile phase was 30:70 (v/v) acetonitrile and water at a flow rate of 1.0 mL/min.

Table.	S1]	Liquid	chromatogra	aphy-mass	spectrometry	analysis data

		Molecular	Chemical
	m/Z	formula	structure
TC	445.16	$C_{22}H_{22}N_2O_8$	OH N OH OH OH OH OH O OH OH O OH
P1	430.14	$C_{21}H_{22}N_2O_8$	OH NH OH OH NH NH2

P2	464.18	C ₂₂ H ₂₈ N ₂ O ₉	OH N OH OH OH OH OH OH OH OOH
Р3	428.16	$C_{22}H_{24}N_2O_7$	N OH OH OH OH OH OH OH
P4	416.12	$C_{20}H_{20}N_2O_8$	OH NH2 OH OH OH NH2 OH O OH O O
Р5	319.11	$C_{17}H_{18}O_6$	OH O OH O
Р6	421.16	$C_{20}H_{24}N_2O_8$	OH NH2 OH OH NH2 OH O OH NH2
Р7	263.12	$C_{15}H_{18}O_4$	ОН О ОН О
Р8	278.12	$C_{15}H_{18}O_5$	HO CH ₃ HO OH O OH
Р9	106.04	C ₇ H ₆ O	
P10	131.09	C ₆ H ₁₃ NO ₂	Н2N-ОН ОН
P11	115.1	C ₆ H ₁₃ NO	HO-NH2