Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Degradation of benzotriazole and benzothiazole with the UV-activated

peracetic acid process: performance, mechanism and transformation

pathway

Webber Wei-Po Lai*, Fang-Yi Gu^a, Wan-Lun Tai^a, Zih-Syuan Tang

Department of Environmental Science and Engineering, Tunghai University, Taichung 407, Taiwan *Corresponding author: Webber Wei-Po Lai (<u>wplai@thu.edu.tw</u>) ^aThese authors contributed equally to this work

Contents

1 Text

6 Tables

1 Figure

Text S1. Information on the chemicals used in this study.

BT (99%), BTH (96%), potassium phosphate monobasic (KH₂PO₄, 99%), potassium phosphate dibasic (K₂HPO₄, 98%), sodium chloride (NaCl, 99%), sodium nitrate (NaNO₃, 99%), *tert*-butanol (*t*-BuOH, 99%), sodium hydroxide (NaOH, 97%) and 5,5-dimethyl-1-pyrroline N-oxide (DMPO, 98%) were obtained from Sigma–Aldrich (St. Louis, MO, USA). Sodium thiosulfate (Na₂S₂O₃, 99%) was acquired from Alfa Aesar (Ward Hill, MA, USA). PAA (15%) was purchased from Ginyork (Taipei, Taiwan). Sodium bicarbonate (NaCl, 99.7%) and sulfuric acid were purchased from Fluka (Buchs, Switzerland). 2,2,6,6-Tetramethyl-4-piperidinol (TEMP, 98%) was obtained from Matrix Scientific (Columbia, SC, USA). Furfuryl alcohol (FFA, 98%) was acquired from Thermo Scientific (Waltham, MA, USA). HPLC-grade methanol was purchased from Duksan (Ansan, Korea), and LC–MS grade methanol was obtained from Macron Fine Chemicals (Center Valley, PA, USA). The Suwannee River fulvic acid standard (1S101F) was acquired from the International Humic Substance Society (IHSS; St. Paul, MN, USA). DPD total chlorine reagent powder pillows were obtained from HACH (Loveland, CO, USA). Milli-Q water (18.2 MΩ cm resistivity; Merck Millipore, MA, USA) was used in all solutions prepared in this study. All stock solutions were placed in amber glass containers and stored under dark conditions in a 4°C refrigerator until use.

	BT	BTH
Chemical structure	N NH	S N
Molecular formula	C ₆ H ₅ N ₃	C7H5NS
Molecular weight (g/mol)	119.12	135.19
pka	8.2^{1}	2.28^{2}
log Kow	1.23 ³	1.99 ⁴
Water solubility (mg/L)	~5957 ⁵	~1684 ⁵

Table S1. Physicochemical characteristics of BT and BTH.

He et al. (2002)¹; Hernandez-Lopez et al. (2022)²; Hart et al. (2004)³; Reddy et al. (1997)⁴; Chemspider⁵

	BT transformation products	BTH transformation byproducts
Mode	gradient	isocratic
Total elution time	5.5 min	3.5 min
Mahilanhagag	A: 0.1% formic acid in DI water	A: 0.1% formic acid in DI water
Mobile phases	B: 0.1% formic acid in LCMS-grade methanol	B: 0.1% formic acid in LCMS-grade methanol
Flow rate	0.4 mL/min	0.4 mL/min
Injection volume	20 µL	20 µL
	- 0 min: 95% (A): 5% (B)	
	- 0.5 min: 95% (A): 5% (B)	
Gradient	- 1 min: 5% (A): 95% (B)	
conditions	- 3.5 min: 5% (A): 95% (B)	_
	- 4 min: 95% (A): 5% (B)	
	- 5.5 min: 95% (A): 5% (B)	

Table S2. Chromatographic conditions for the analyses of BT and BTH transformation products

Table S3. Mass spectrometric conditions for analyses of BT and BTH transformation products.

Mode	ESI positive
End plate offset voltage	500 V
Capillary voltage	4500 V
Nebulizer gas pressure	30.5 psi (2.1 bar)
Dry gas flowrate	9 L/min
Dry gas temperature	200 °C
Mass scan range	50–500 m/z

Compound	Initial compound concentration	PAA dosage	Solution pH	Reaction time (min)	Removal efficiency	Reference	
naproxen	4 μΜ	20 mg/L	7	30	85%	(Chen et al., 2019) ⁶	
diclofenac	1 µM	50 µM	7	15	80%	(Zhang et al., 2020) ⁷	
steroid estrogens (estrone, 17β-estradiol, estriol and 17α-ethinyl estradiol)	50 μg/L	30 mg/L	6.01	30	80–100%	(Hu et al., 2022) ⁸	
ibuprofen	1 µM	1 mg/L	7.1	30	90%	(0, 1, 1)	
bezafibrate	1 µM	1 mg/L	7.1	120	90%	- (Cai et al., - 2017) ⁹	
clofibric acid	1 µM	1 mg/L	7.1	10	90%		
tetracycline	5 μΜ	0.1 mM	7	30	100%	- (Meng et al., - 2023) ¹⁰	
oxytetracycline	5 μΜ	0.1 mM	7	45	100%		
chlortetracycline	5 μΜ	0.1 mM	7	10	100%		
β-N-methylamino-L-alanine	1 mg/L	0.2 mM	7	5	92.31%	(Zhou et al., 2022) ¹¹	
haloanisoles (2-monochloroanisole, 2,4-dichloroanisole, 2,4,6- trichloroanisole and 2,4,6-tribromoanisole)	50 μg/L	10 mg/L	5	60	>92%	(Zhang et al., 2021) ¹²	
chloramphenicol	25 mg/L	50 mg/L	7.6	120	100%	(Rizzo et al., 2018) ¹³	
benzotriazole	0.08 mM	10 mg/L	7	25	100%	41. in 1990 al-	
benzothiazole	0.08 mM	10 mg/L	7	40	91%	this work	

Table S4. UV/PAA degradation of various micropollutants and organic pollutants.

			1		
	ъU	Alkalinity	NO_3^-	Cl ⁻	Total organic carbon
рн		$(mM HCO_3^-)$	(mM)	(mM)	(mg/L)
WWTP wastewater	7.02	1.71	0.97	0.63	9.5

Table S5. Water quality of the WWTP wastewater sample.

Table S6. UHPLC-QTOF-MS information on the detected BT and BTH transformation products.

BT transformation	Retention time	D	Proposed	Molecular mass	
products	(min)	Proposed structure	formula	(g/mol)	
BT-P1	2.9	OH N NH	C ₆ H ₅ N ₃ O	135.12	
BT-P2	2.7	OH N NH OH	C ₆ H ₅ N ₃ O ₂	151.12	
BT-P3	1.3	OH NH ₂	C ₆ H ₇ NO	109.13	
BT-P4	1.8	0 NH	$C_5H_5N_3O_2$	139.11	
BT-P5	1.1	HO HO HO	$C_6H_7N_3O_2$	153.14	
BTH transformation	Retention time		Proposed	Molecular mass	
products	(min)	Proposed structure	formula	(g/mol)	
BTH-P1	1.5	HO	C7H5NOS	151.19	
BTH-P2	0.9	HO OH	C7H5NO2S	167.19	
BTH-P3	1.0	HO HO OH	C7H5NO3S	183.18	

Figure S1. TOC mineralization of BT and BTH during the UV/PAA process ($[BT]_0$ or $[BTH]_0 = 0.08$ mM, $[PAA]_0 = 10$ mg/L and pH = 7.0).

- 1. Z. Y. He, W. Q. Rao, T. H. Ren, W. M. Liu and Q. J. Xue, The tribochemical study of some N-containing heterocyclic compounds as lubricating oil additives, *Tribol Lett*, 2002, **13**, 87-93.
- 2. L. Hernandez-Lopez, A. Cortes-Martinez, T. Parella, A. Carne-Sanchez and D. Maspoch, pH-Triggered Removal of Nitrogenous Organic Micropollutants from Water by Using Metal-Organic Polyhedra, *Chem-Eur J*, 2022, **28**.
- 3. D. S. Hart, L. C. Davis, L. E. Erickson and T. M. Callender, Sorption and partitioning parameters of benzotriazole compounds, *Microchem J*, 2004, 77, 9-17.
- 4. C. M. Reddy and J. G. Quinn, Environmental chemistry of benzothiazoles derived from rubber, *Environ Sci Technol*, 1997, **31**, 2847-2853.
- 5. Chemspider, <u>http://www.chemspider.com/</u>.
- 6. S. Chen, M. Cai, Y. Liu, L. Zhang and L. Feng, Effects of water matrices on the degradation of naproxen by reactive radicals in the UV/peracetic acid process, *Water Res*, 2019, **150**, 153-161.
- 7. L. Zhang, Y. Liu and Y. Fu, Degradation kinetics and mechanism of diclofenac by UV/peracetic acid, *RSC Adv*, 2020, **10**, 9907-9916.
- J. Hu, T. Li, X. Zhang, H. Ren and H. Huang, Degradation of steroid estrogens by UV/peracetic acid: Influencing factors, free radical contribution and toxicity analysis, *Chemosphere*, 2022, 287, 132261.
- M. Cai, P. Sun, L. Zhang and C. H. Huang, UV/Peracetic Acid for Degradation of Pharmaceuticals and Reactive Species Evaluation, *Environ Sci Technol*, 2017, **51**, 14217-14224.
- L. Meng, J. Dong, J. Chen, J. Lu and Y. Ji, Degradation of tetracyclines by peracetic acid and UV/peracetic acid: Reactive species and theoretical computations, *Chemosphere*, 2023, **320**, 137969.
- S. Q. Zhou, J. M. Huang, L. J. Bu, G. C. Li and S. M. Zhu, Degradation of beta-N-methylamino-L-alanine (BMAA) by UV/peracetic acid system: Influencing factors, degradation mechanism and DBP formation, *Chemosphere*, 2022, **307**, 136083.
- 12. K. J. Zhang, Y. L. San, C. Cao, T. Q. Zhang, C. Cen, Z. Li and J. Fu, Kinetic and mechanistic investigation into odorant haloanisoles degradation process by peracetic acid combined with UV irradiation, *J Hazard Mater*, 2021, **401**, 123356.
- L. Rizzo, G. Lofrano, C. Gago, T. Bredneva, P. Iannece, M. Pazos, N. Krasnogorskaya and M. Carotenuto, Antibiotic contaminated water treated by photo driven advanced oxidation processes: Ultraviolet/H2O2 vs ultraviolet/peracetic acid, *Journal of cleaner production*, 2018, 205, 67-75.