Electronic Supplementary Information (ESI) for EES Catalysis

Facet-Engineered Photoelectrochemical Nanocatalysts toward Fast Kinetic Lithium-Air Batteries

Yiqiao Wanga,h,c,d Siyuan Pan,a,h,c Huan Li,e Dewang Li,a,h,c Yong Guo,a,h,c Sijia Chi,a,h,c Chuannan Geng,a,h,c Shichao Wua,h,c * and Quan-Hong Yanga,h,c *

a. Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China

b. National Industry-Education Integration Platform of Energy Storage, Tianjin University, Tianjin, 300072, China

c. Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China

d. Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China

e. School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia

*Corresponding Authors

E-mail: qhyangcn@tju.edu.cn; wushichao@tju.edu.cn
Table of Contents:

Figure S1. SEM image of pristine Fe$_2$O$_3$ with irregular shaped.

Figure S2. TEM image of (110) Fe$_2$O$_3$ nanoplates.

Figure S3. Schematic diagram of the band positions of (110) Fe$_2$O$_3$ and pFe$_2$O$_3$.

Figure S4. The standard curve of RhB solution.

Figure S5. Tafel plots for evaluating the ORR kinetics of catalysts under visible light.

Figure S6. N$_2$ adsorption-desorption isotherm results of pFe$_2$O$_3$ and (110) Fe$_2$O$_3$.

Figure S7. N$_2$ adsorption-desorption isotherm results of CNT, pFe$_2$O$_3$@CNT, and (110) Fe$_2$O$_3$@CNT.

Figure S8. Raman spectra of the discharged cathode in dark/light conditions.

Figure S9. RRDE measurements for pFe$_2$O$_3$ based cathode.

Figure S10. C 1s XPS spectra of discharged cathode of (110) Fe$_2$O$_3$ under dark/light conditions.

Figure S11. Optimized structure and the corresponding binding energy of O$_2$ and LiO$_2$ on (110) and (104) facet of α-Fe$_2$O$_3$ by DFT calculations.

Figure S12. SEM images of discharged cathode of pFe$_2$O$_3$ under dark and light conditions, respectively.

Figure S13. Nyquist plots of fresh (110) Fe$_2$O$_3$ electrode.

Figure S14. Nyquist plots of fresh and cycled pFe$_2$O$_3$ electrode.
Figure S1. SEM image of pristine Fe$_2$O$_3$ with irregular shaped.
Figure S2. TEM image of (110) Fe$_2$O$_3$ nanoplates.
Figure S3. Schematic diagram of the band positions of (110) Fe$_2$O$_3$ and pFe$_2$O$_3$ with the equilibrium potential of the Li$_2$O$_2$ reaction, where the dotted line indicates pFe$_2$O$_3$ and the solid gray line indicates (110) Fe$_2$O$_3$.
Figure S4. The standard curve of RhB solution, in which the concentration was linearly related to the absorbance.
Figure S5. Tafel plots for evaluating the ORR kinetics of catalysts under visible light.
Figure S6. N$_2$ adsorption-desorption isotherm results of pFe$_2$O$_3$ and (110) Fe$_2$O$_3$.
Figure S7. N$_2$ adsorption-desorption isotherm results of CNT, pFe$_2$O$_3$@CNT, and (110) Fe$_2$O$_3$@CNT, and their specific area calculated by Brunauer-Emmett-Teller (BET) method according to the points P/P$_0$ = 0.05-0.25.
Figure S8. Raman spectra of the discharged cathode in dark/light conditions.
Figure S9. RRDE measurements for pFe$_2$O$_3$ based cathode. LSV curves were measured at 800 rpm with the disc potential step from OCP to 1.8V vs. Li$^+$/Li, E_{ring} was held at 3.5 V vs. Li$^+$/Li.
Figure S10. C 1s XPS spectra of discharged cathode of (110) Fe₂O₃ under dark/light conditions.
Figure S11. Optimized structure and the corresponding binding energy of O$_2$ and LiO$_2^*$ on (110) and (104) facet of α-Fe$_2$O$_3$ by DFT calculations.
Figure S12. SEM images of discharged cathode of pFe₂O₃ under dark and light conditions, respectively.
Figure S13. Nyquist plots of fresh (110) Fe_{2}O_{3} electrode.
Figure S14. Nyquist plots of fresh and cycled pFe₂O₃ electrode.