Supplementary Information

Sustainable Waste-Nitrogen Upcycling Enabled by Low-Concentration Nitrate Electrodialysis and High-Performance Ammonia Electrosynthesis

Yifu Chen,^a Pouya Ammari-Azar,^b Hengzhou Liu,^a Jungkuk Lee,^a Yu Xi,^a Michael J. Castellano,^c Shuang Gu ^{*b} and Wenzhen Li ^{*a}

^{a.} Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, USA

^{b.} Department of Mechanical Engineering, Wichita State University, Wichita, Kansas 67260, USA

^{c.} Department of Agronomy, Iowa State University, Ames, Iowa 50011, USA

*Corresponding authors: shuang.gu@wichita.edu (S. Gu), wzli@iastate.edu (W. Li)

Table of Contents

1. Experimental Section	. 3
1.1 Chemicals	. 3
1.2 Electrochemical Measurements for NH ₃ Production	. 3
1.3 Direct NH ₃ Fuel Cell Tests	. 5
1.4 NO ₃ ⁻ Concentrating by Electrodialysis	. 5
1.5 Product Quantification	. 7
1.6 Physical Characterization	. 9
2. Techno-Economic Analysis (TEA)	10
2.1 TEA of NO ₃ ⁻ Concentrating by Electrodialysis	10
2.2 TEA of NO ₃ ⁻ -to-NH ₃ Conversion by Electrolysis in MFAEL	11
3. Supplementary Figures (S1–S41)	12
4. Supplementary Tables (S1–S3)	53
5. Supplementary References	56

1. Experimental Section

1.1 Chemicals

All chemicals were used as received without purification. Nickel wire mesh (200 mesh, 0.002" wire diameter) was purchased from Wire Mesh Store. Nickel foam (1.6 mm thickness, 99.9%) was purchased from MTI Corporation. Nickel wire (0.04" diameter, 99.5%) and nickel rod (0.12" diameter, 99%) were purchased from Alfa Aesar. Sodium hydroxide (NaOH, ≥98%), potassium hydroxide (KOH, \geq 85%), and the chemicals for the screening tests (Fig. 6b) were purchased from Sigma-Aldrich. Potassium nitrate (KNO₃, 99.7%), sulfuric acid (H₂SO₄, TraceMetalTM Grade), and ammonium hydroxide (NH₃·H₂O, 28.0–30.0 w/w %) were purchased from Fisher Chemical. Potassium nitrite (KNO₂, 97%) was purchased from Acros Organics. Protein powder (Orgain) was purchased from Amazon. Dry algae powder was kindly provided by Gross-Wen Technologies. Ammonia standard solution (100 mg L^{-1} as NH₃-N) was purchased from Hach. Plain carbon cloth (1071 HCB) and carbon paper (Sigracet 22 BB) were purchased from Fuel Cell Store. A201 anion exchange membrane (28 µm thickness) and AS-4 ionomer solution (5 wt.%) were purchased from Tokuyama Corporation. 40% Pt on Vulcan XC-72 (Pt/C) and 40% Pt-Ir (1:1 atomic ratio) on Vulcan XC-72 (PtIr/C) were purchased from Premetek. Nitrogen (N₂, Ultra High Purity, 99.999%), argon (Ar, Ultra High Purity, 99.999%), helium (He, Ultra High Purity, 99.999%), oxygen (O₂, Ultra High Purity, 99.999%), air (Industrial Grade), and carbon dioxide (CO₂, industrial grade) were purchased from Airgas. Deionized (DI) water (18.2 MΩ cm, BarnsteadTM E-PureTM) was used for all experiments in this work.

1.2 Electrochemical Measurements for NH3 Production

1.2.1 Operation of the Membrane-Free Alkaline Electrolyzer (MFAEL)

The configuration of MFAEL was modified from our previous work.¹ In brief, the cell body consisted of a 100 mL screw-cap polytetrafluoroethylene (PTFE) bottle (height: 88 mm; diameter: 52 mm) and a custom-made stainless-steel lid. Two pieces of 1/4" OD alumina ceramic tubes were used for the carrier gas inlet and outlet. A union tee with a septum was connected to the gas inlet tube and offered a liquid injection port, through which water or sample solution can be supplied during cell operation. Two 10 cm² nickel mesh electrodes (3.3×3 cm², 200 mesh) were used as the electrodes, and were attached to nickel wires (0.04" diameter) connected to a potentiostat (WaveDriver 20, for $I \le 1000$ mA) or a DC power supply (BK Precision 1697B, for I > 1000 mA). Silicone O-rings and aluminosilicate adhesive (Resbond 907GF) were used to seal the gaps and ensure the cell installation is leak-free.

Prior to the electrolysis, the NaOH/KOH/H₂O electrolyte (containing equimolar of NaOH and KOH and 40 wt.% of water) was prepared by adding 29.7 g of NaOH, 48.1 g of KOH, and 38.9 g of deionized water in the PTFE bottle, which was then sealed in an oven at 80 °C overnight for the complete dissolution of NaOH and KOH. For typical tests, an appropriate amount of N-containing reactant was added before the cell cap was installed. For electrochemical NO₃⁻ reduction (NO3RR), the amount of added KNO₃ was equal to the theoretical amount of NO₃⁻ that can be fully converted to NH₃ based on the applied charge. For the conversion of organic Nr compounds, the amount of added reactant was specified in the figure captions. Subsequently, the cell was placed in an oil bath preheated to 80 °C, and 200 mL min⁻¹ of N₂ was bubbled from the gas inlet tube into the electrolyte. The outlet gas from MFAEL was bubbled into an acidic absorbing solution (100 mL of 0.1 M H₂SO₄) for NH₃ collection.

After 30 min of gas bubbling to remove the air from the system, a constant current was applied between the electrodes. During electrolysis, the absorbing solution was changed every 30 min for NH_4^+ quantification. After electrolysis, the system was kept with gas bubbling for additional 30 min to deplete the remaining NH_3 in the gas line. The electrolyte was then carefully diluted to 1 L with deionized water for the quantification of NO_3^- , NO_2^- , and organic products (detailed in 1.5).

The conversion of $NO_3^-(X)$ and faradaic efficiency of product *i* (FE_{*i*}) were calculated by

$$X = \frac{n_0 - n}{n_0} \times 100\%$$
$$FE_i = \frac{n_i z_i F}{O} \times 100\%$$

where n_0 is the initial amount of NO₃⁻ (mol); *n* is the amount of NO₃⁻ after electrolysis (mol); n_i is the amount of product *i* (mol); z_i is the number of electrons transferred to product *i*; *F* is the Faraday constant (96,485 C mol⁻¹); *Q* is the total charge passed through the electrolytic cell (C).

The NH₃ production rate was calculated by

rate (mol cm⁻² s⁻¹) =
$$\frac{cV}{At}$$

where c is the NH₄⁺ concentration (M); V is the volume of the absorbing solution (L); A is the geometric area of the electrode (cm²); t is the electrolysis duration (s).

The N balance for Nr conversion was calculated by

N balance (%) =
$$\frac{\text{amount of detected N species after reaction}}{\text{amount of added Nr}} \times 100\%$$

For the real N-containing samples (protein and algae powder), the content of N (wt.%) was determined by a Combustion Elemental Analyzer (CHN/S Thermo FlashSmart 2000).

1.2.2 Measurement of Roughness Factor (RF)

To compare the electrochemically active surface area of the Ni-based electrodes before and after electrolysis in the NaOH/KOH/H₂O electrolyte, cyclic voltammetry (CV) measurements were carried out in a single-compartment cell with a standard three-electrode configuration without stirring.² The electrolyte was 1 M KOH. The geometric area of the working electrode was 1 cm² (1×1 cm²). An Ag/AgCl electrode (saturated KCl, $E^0 = 0.197$ V vs. SHE) and a Pt foil were used as the reference electrode and counter electrode, respectively. Different scan rates ranging from 50 to 200 mV s⁻¹ were applied.

1.2.3 NO3RR in the Scaled-up MFAEL

The configuration of the scaled-up MFAEL is similar to the 100 mL reactor. The cell body consisted of a 2.5 L screw-cap PTFE bottle (height: 260 mm; diameter: 131 mm), a custom-made stainless-steel lid, two pieces of 1/2" OD alumina ceramic tubes, two 100 cm² nickel mesh electrodes (10×10 cm², 200 mesh), and two nickel rods (0.12" diameter) for conducting electricity. The nickel rods were bent and stitched through the folded nickel mesh electrodes to ensure stable contact, and were connected to a DC power supply (BK Precision 1901B). Silicone O-rings and aluminosilicate adhesive (Resbond 907GF) were used to seal the gaps and ensure the cell installation is leak-free. The amount of electrolyte was 25 times higher than the 100 mL reactor, and the amount of added KNO₃ was equal to the theoretical amount of NO₃⁻ that can be fully converted to NH₃ based on the applied charge. The flow rate of carrier gas was 500 mL min⁻¹. The

applied current was 25 A (corresponding to 250 mA cm^{-2} of current density), and the electrolysis time was 24 hours.

Different absorbing solutions were used for obtaining different NH₃-based chemical products. For NH₄⁺ salts, 400 mL of 5 M H₂SO₄ was used for NH₃ absorption. For producing pure NH₃ solution, 100 mL of deionized water was used for NH₃ absorption, which was cooled with 5 °C circulated water by a chiller. It should be noted that the volume of the absorbing solution increased during electrolysis due to the condensation of water vapor and the decrease of solution density due to the increasing NH₃ content. For producing NH₄HCO₃, 100 mL of deionized water was pre-saturated with CO₂ and continuously bubbled with 500 mL min⁻¹ of CO₂ during the electrolysis. Considering the decomposition temperature of NH₄HCO₃ (36 °C), the absorbing solution was also cooled with 5 °C circulated water and magnetically stirred at 400 r.p.m. Due to the relatively low solubility of NH₄HCO₃ (around 14.3 g in 100 mL of water), solid was precipitated in the absorbing solution. After the reaction, solid NH₄HCO₃ was obtained by vacuum filtration, followed by washing with ethanol and drying at room temperature. The remaining unabsorbed NH₃ from water and CO₂-saturated water was collected by a second absorbing solution containing 400 mL of 5 M H₂SO₄.

1.3 Direct NH₃ Fuel Cell Tests

The catalysts were deposited onto the electrode substrates by spray coating. For the preparation of the anode, a plain carbon cloth was first treated in HNO₃ (67–70%) at 110 °C for 1 h 45 min to improve its hydrophilicity. The catalyst ink was prepared by dispersing PtIr/C and AS-4 ionomer in 2-propanol (10 mg_{catalyst} mL⁻¹), with a weight ratio of 9:1 between the catalyst and dry ionomer. The ink was then spray-coated onto the hydrophilic carbon cloth. For the cathode, the catalyst ink was prepared by dispersing Pt/C and AS-4 ionomer in a 7:3 mixture of 2-propanol and water (10 mg_{catalyst} mL⁻¹), and the weight ratio between the catalyst and dry ionomer was 7:3, which was spray-coated onto a piece of carbon paper (Sigracet 22 BB). The final loading of platinum-group metal was 1.0 mg cm⁻² for both cathode and anode.

NH₃ fuel cell tests were performed with a Scribner 850e Fuel Cell Test System. The fuel cell configuration includes stainless-steel end plates, gold-coated current collectors, graphite flow-field plates with serpentine channels, PTFE and silicone gaskets, two electrodes, and an anion-exchange membrane (Tokuyama A201). The active area of the membrane-electrode assembly (MEA) was 5 cm², which was formed after assembling the cell hardware. The cell temperature was 80 °C. 75 mL of the NH₃ solution obtained from MFAEL (with 1.25 M added KOH) was supplied to the anode and circulated by a peristaltic pump at a flow rate of 4 mL min⁻¹, and the reservoir of the NH₃ solution was kept at 5 °C by cooling water from a chiller. 500 mL min⁻¹ of O_2 was passed through a humidifier at 80 °C before entering the cathode flow field at atmospheric pressure.

1.4 NO₃⁻ Concentrating by Electrodialysis

1.4.1 The Electrodialysis System

The NO₃⁻ concentrating experiment was conducted in a customized three-membrane and four-compartment electrodialysis cell on a flow-cell base apparatus (ElectroCell Inc.). The electrodialysis cell was constructed in the following configuration: "negative electrode | CEM | diluate solution | AEM | concentrate solution | CEM | positive electrode", where CEM and AEM stand for cation-exchange membrane and anion-exchange membrane, respectively. In this study, FKA-PK-130 (2.6 Ω cm² in Na⁺) and FAA-PK-130 (2.2 Ω cm² in Cl⁻) were used for CEM and

AEM, respectively, both from Fuma-Tech. A set of three rectangular sheets ($2.5 \text{ cm} \times 2.0 \text{ cm}$) of stainless-steel meshes ($80 \times 80 \text{ mesh}$), was employed as the negative electrode, and a set of three rectangular sheets ($2.5 \text{ cm} \times 2.0 \text{ cm}$) of Monel meshes ($100 \times 100 \text{ mesh}$) was employed as the positive electrode. A stainless-steel plate and a titanium plate were used as current collectors on the negative electrode and positive one, respectively. As defined by the single surface of one membrane in the electrodialysis pair "CEM | diluate solution | AEM | concentrate solution", the effective area of the electrodialysis pair was 5 cm^2 (2.5 cm in length and 2.0 cm in width). The compartment frames that enclose each of four compartment solutions in the electrodialysis cell were made of a high-performance fluorocarbon material (Viton) in 500 µm of thickness. A woven Nylon mesh ($30 \times 30 \text{ mesh}$) cut in the precise shape of flow channel was placed inside each compartment as the compartment spacer to hold the pace for fluid passing and to create the turbulence for fluid mixing.

Both diluate solution and concentrate solution have their own standalone storage containers: diluate container and concentrate container. The negative-electrode solution and the positive-electrode solution share the same electrode container. Two separate peristaltic pumps were utilized to control the flows of three solutions: one pump for both diluate solution and concentrate solution, and the other pump for the shared electrode solution. Four compartments of the electrodialysis cell are connected, through two peristaltic pumps, with three solutions by 1/8" tubing (Masterflex® Precision L/S-16).

1.4.2 Electrodialysis Operation

The electrodialysis operation was carried out by applying a constant current (*e.g.*, 1 mA cm⁻²) using a potentiostat/galvanostat (VersaSTAT 3F, AMETEK) between the negative electrode and the positive electrode of the electrodialysis cell for a certain time matching the designed the NO₃⁻ removal (75%) from the diluate solution. During the electrodialysis operation, the voltage of the cell was measured and recorded as the voltage profile of the three-membrane electrodialysis. 7.14 mM KNO₃, equivalent to 100 ppm NO₃⁻-N, was used as the initial diluate solution; 2 M KNO₃ (28,000 ppm NO₃⁻-N) was used as the concentrate solution; and 2 M KCl was used as the electrode solution for both negative electrode and positive one. Note that a large amount of concentrate solution was used, and therefore, its concentration (2 M KNO₃) was practically treated as a constant (<0.05% of change) during the electrodialysis operation. In this study, a constant flow rate of 60 mL min⁻¹ was precisely controlled for each of the four compartments, leading to 10 cm s⁻¹ of the nominal fluid velocity through each of the four compartments. Prior to use, both FKA-PK-130 and FAA-PK-130 membranes were treated with 0.5 M KCl for 48 h. Distilled water was used to prepare all solutions in this study.

After the electrodialysis operation, the NO_3^- concentration of the finial diluate solution was analyzed (detailed in 1.5.2). The detected concentration of the remaining NO_3^- in the diluate solution after electrodialysis operation was 1.99 mM, corresponding to 96.3% of coulombic efficiency: (7.14 – 1.99) mM / (7.14 mM × 75% of designed NO_3^- removal).

1.4.3 Voltage Profile of the Electrodialysis Pair

The voltage profile of the electrodialysis pair was obtained by subtracting the voltage profile of single-membrane background cell from that of three-membrane electrodialysis. The single-membrane background cell was constructed by assembling the negative electrode, one CEM, and the positive electrode, configured as "negative electrode | CEM | positive electrode". Clearly, the cell voltage of this single-membrane cell consists of the sum of the background voltage losses

including ohmic loss from one CEM and the two electrode compartments, electron-transfer kinetic loss from both electrodes, and mass-transport loss from the two electrode solutions.

Because of the required electron transfer, electrochemical reactions do occur on the electrodes of the electrodialysis cell: hydrogen evolution and/or oxygen reduction take place on the negative electrode; and oxygen evolution and/or hydrogen oxidation take place, depending on the scale of current density and electrolyte conditions. No specific electrocatalyst was applied on either of the two electrodes, and thus the kinetic overpotentials were often considerable. Nevertheless, the background cell is exactly shared with the electrodialysis cell, and therefore, the voltage of the electrodialysis pair, by comparing the three-membrane electrodialysis cell and the single-membrane background cell, reflects the true electrodialysis behavior.³ Considering that practical electrodialysis systems comprise a few hundred electrodialysis pairs with only one set of background cell is usually insignificant compared with the voltage from those electrodialysis pairs.

1.5 Product Quantification

1.5.1 Quantification of NH₃

NH₃ in the absorbing solution (0.1 M H₂SO₄) was quantified by the indophenol blue colorimetric method. Four freshly prepared reagents were used, including (a) coloring solution, containing 0.4 M sodium salicylate and 0.32 M NaOH; (b) oxidizing solution, containing 0.75 M NaOH in NaClO solution; (c) catalyst solution, containing 10 mg ml⁻¹ of Na₂[Fe(CN)₅NO]·2H₂O; and (d) 6 M NaOH solution. The sample solution was first diluted with 0.1 M H₂SO₄ to the proper range of NH₃ concentration. 4 mL of the diluted sample solution was then added into a glass vial, followed by the sequential addition of 200 µL of (d), 50 µL of (b), 500 µL of (a), and 50 µL of (c). The reagents were mixed by shaking vigorously and kept in a dark place for color development. After 2 h, absorbance was measured by a UV-Vis spectrophotometer (Shimadzu UV-2700) at 660 nm. The calibration curve was established by testing a series of standard NH₃ solutions ranging from 0 to 2.5 mg L⁻¹ (in NH₃-N) diluted with 0.1 M H₂SO₄.

For the ¹⁵N isotope labeling experiment, the concentrations of ¹⁴NH₃ and ¹⁵NH₃ (in 0.1 M H₂SO₄) were determined by ¹H Nuclear Magnetic Resonance (NMR) spectroscopy on an NMR spectrometer (Bruker Avance NEO 400 MHz). The sample solution was first diluted with 0.1 M H₂SO₄ to the proper range of NH₃ concentration. 800 μ L of the diluted sample solution was then mixed with 200 μ L of DMSO-d₆ and 200 μ L of 32 μ M maleic acid in DMSO-d₆ (internal standard). The scan number was 1,024 with a water suppression method. Standard ¹⁴NH₃ and ¹⁵NH₃ solutions were prepared for calibration with concentrations ranging from 0 to 5 mg L⁻¹ (in ¹⁴N and ¹⁵N). NH₃ content in CO₂-saturated water was also quantified by ¹H NMR due to the pH-sensitive nature of the colorimetric method.

Ion chromatography (IC) was also employed for NH₃ quantification to verify the accuracy. IC measurements were performed on a DionexTM Easion system equipped with a conductivity detector, 4 mm Dionex IonPac CG12A/CS12A columns, and a CCRS 500 suppressor. The mobile phase was 20 mM methanesulfonic acid, and was pumped at a flow rate of 1.0 mL min⁻¹. The running time was 8 min. The calibration solutions were prepared with (NH₄)₂SO₄ in the concentration range of 20–100 mg L⁻¹ (in NH₃-N).

1.5.2 Quantification of NO₃⁻ and NO₂⁻

 NO_3^- and NO_2^- in the diluted electrolyte were analyzed by High-Performance Liquid Chromatography (HPLC)⁴ (Agilent Technologies, 260 Infinity II LC System) equipped with a variable wavelength detector (Agilent 1260 Infinity Variable Wavelength Detector VL). The wavelength of 213 nm was chosen for NO_3^- detection. A C18 HPLC column (Gemini[®] 3 µm, 110 Å, 100 × 3 mm) was used for analysis at 25 °C with a binary gradient pumping method to drive the mobile phase at 0.4 mL min⁻¹. The mobile phase consisted of 0.01 M *n*-Octylamine in a mixed solution containing 30 vol.% methanol and 70 vol.% deionized water, and the pH of the mobile phase was adjusted to 7.0 with phosphoric acid. The running time was 30 min. The calibration solutions for NO_3^- or NO_2^- were prepared with KNO₃ or KNO₂ in the concentration range of 0.0625–2 mM.

1.5.3 Identification and Quantification of Organic Products

To identify the products from the oxidation of C–N bonds, we used ¹³C-labeled glycine and alanine as simple organic Nr compounds as the reactants in MFAEL, and analyzed the products by ¹³C NMR on an NMR spectrometer (Bruker Avance NEO 400 MHz). 1 mL of the sample solution (diluted electrolyte) was mixed with 200 μ L of D₂O and 200 μ L of 50 mg mL⁻¹ DSS solution (internal standard). The scan number was 128.

To quantify the reactant (alanine) and product (acetate) after electrolysis, ¹H NMR was carried out on a Bruker AVIII-600 MHz NMR spectrometer. 400 μ L of the sample solution (diluted electrolyte) was mixed with 200 μ L of D₂O and 100 μ L of 15 mM dimethylmalonic acid (DMMA) solution (internal standard). The scan number was 8. The calibration solutions for alanine and acetate were prepared in the concentration range of 0–20 mM.

The carboxylic acid products were also identified and quantified by HPLC. The wavelength of 220 nm was selected. An OA-1000 organic acids column (Grace[®], length: 300 mm, ID: 6.5 mm, part no. 9046) was used for analysis at 25 °C with a binary gradient pumping method to drive the mobile phase (5 mM sulfuric acid) at 0.6 mL min⁻¹. The running time was 30 min. Solutions prepared by a series of standard chemicals were also tested by ¹³C NMR and HPLC for product identification, including carbonate, formate, glycolate, glyoxylate, oxamate, oxalate, lactate, pyruvate, acetate, and acrylate.

1.5.4 Quantification of Gaseous Products

The gaseous products of NO3RR in the NaOH/KOH/H₂O electrolyte were analyzed by online gas chromatography (SRI Instruments, 8610C, Multiple Gas #3) equipped with HayeSep D and MolSieve 5Å columns and a thermal conductivity detector. The MFAEL was operated under the same conditions specified in 1.2.1, except that Ar or He was used as the carrier gas at a lower total flow rate of 85 mL min⁻¹. The same carrier gas was used for the MFAEL and GC. During the measurement with Ar, a 8-min programmed cycle was repeated, including 6 min of the GC running period and 2 min of the cooling period. During the measurement with He, a 16-min programmed cycle was repeated, including 11 min of the GC running period and 5 min of the cooling period.

For each cycle, the generation of product $i(n_i, mol)$ was calculated by

1

$$n_i = c_i \times 10^{-6} \times \frac{p\dot{V} \times 10^{-6} \times t}{RT}$$

where c_i is the concentration (ppmv) of product *i*; \dot{V} is the volumetric flow rate of the gas (mL min⁻¹); *p* is the atmospheric pressure ($p = 1.013 \times 10^5$ Pa); *R* is the gas constant (R = 8.314 J mol⁻¹ K⁻¹); *T* is the room temperature (293.15 K); *t* is the running time of each cycle (min). The

calibration curves of H_2 (10–10,000 ppm) and N_2 (100–100,000 ppm) were established by analyzing the standard calibration gases.

1.6 Physical Characterization

X-Ray Diffraction (XRD) crystallography was carried out on a Rigaku Smartlab highresolution X-ray diffractometer with Cu K-alpha radiation (wavelength, $\lambda = 1.5406$ Å) and a tube voltage of 40 kV (with a tube current of 30 mA). The scan was performed at a rate of 10° min⁻¹ and a step size of 0.01°. Scanning electron microscopy (SEM) imaging and Energy Dispersive Xray Spectroscopy (EDS) were performed on a FEI Quanta-250 field-emission scanning electron microscope with a light-element X-ray detector and an Oxford Aztec energy-dispersive X-ray analysis system. X-ray Photoelectron Spectroscopy (XPS) was performed on a Kratos Amicus/ESCA 3400 X-ray photoelectron spectrometer with Mg K-alpha X-ray (1,253.7 eV), and all spectra were calibrated with the C 1s peak at 284.8 eV. Raman spectra were collected using an inVia 488 nm Renishaw Coherent Laser Raman Spectrometer calibrated to an internal standard silicon reference centered at 520.5 ± 0.5 cm⁻¹. Samples were tested under a 20x objective lens, with a spot size of ~2500 µm², from 100–4000 cm⁻¹ with 10 accumulations at 12.5 mW power.

2. Techno-Economic Analysis (TEA)

2.1 TEA of NO₃⁻ Concentrating by Electrodialysis

The techno-economic analysis (TEA) was conducted to evaluate the levelized total cost (LTC) of NO₃⁻ concentrating by electrodialysis, on account of the unit kmol-NO₃⁻ recovered from NO₃⁻-containing wastewater. As the two major constituents of the LTC (*i.e.*, LTC = LCC + OPEX), the levelized capital cost (LCC) and the operational expense (OPEX) were synergistically analyzed by sharing the key parameters. For example, the dimensions of the electrodialysis stack were the input for optimizing OPEX (by fluid velocity) as well as finding operational current density. The operational current density determined the total required area of electrodialysis pair per unit of kmol-NO₃⁻ and thus the corresponding capital cost. The hierarchical structure of the TEA in this study is presented in Fig. S27. The detailed TEA assumptions and results are shown in Fig. S28.

Capital cost analysis was performed by virtue of a typical medium-size commercial electrodialysis stack: 40 cm \times 160 cm for each electrodialysis pair, and 250 pairs in total. The market price of the electrodialysis system is \$35,000 (Hangzhou Iontech Environmental Tech Co. Ltd.). The LCC was calculated via the standard capital recovery method on the following assumptions: 40 years of service time,⁵ 19% as the cost ratio of maintenance to the system, 3% of annual discount rate,⁶ 83.3% of capacity factor (300 days per year for operation), and 90% of coulombic efficiency.

Energy consumption was considered to be the sole source for the OPEX, with three following contributors to energy consumption: electrodialysis (by analyzing pair voltage, operational current, and efficiencies), pumping (by analyzing pair pressure drop, flow rate, and efficiencies), and others (by assuming 10% of the sum of the first two sources).

Unless otherwise specified, the following set of design and operational parameters was employed for analyzing the OPEX: 7.14 mM NaNO₃ (100 ppm NO₃⁻-N) as the initial diluate solution (C_s); 2 M NaNO₃ (28,000 ppm NO₃⁻-N) as the initial concentrate solution (C_c); 2 M NaNO₃ as the electrode solution (C_e); 0.05 mm as the intermembrane distance in an electrodialysis pair (d); 4 cm s⁻¹ as the nominal fluid velocity; \$0.07 kWh⁻¹ as the electricity price; 80% as the designed NO₃⁻ recovery from diluate NO₃⁻. The electrodialysis pair in this work comprises one anion-exchange membrane (assuming 2.5 Ω cm², such as FAA-PK-130, Fuma-Tech, 2.2 Ω cm² in Cl⁻ or 2.35 Ω cm² in NO₃⁻), one cation-exchange membrane (assuming 2.5 Ω cm², such as FKA-PK-130, Fuma-Tech, 2.6 Ω cm² in Na⁺), one compartment of diluate solution (0.05 cm thick, 100 ppm NO₃⁻-N or 7.14 mM NaNO₃, with a porous Nylon mesh as the spacer), and one compartment of concentrate solution (0.05 cm thick, 2 M NaNO₃, with a porous Nylon mesh as the spacer).

The limiting current density depends heavily on species conditions (concentration and diffusion coefficient), operational conditions (fluid velocity), and geometric dimensions/locations (pair distance and flow length). In this study, limiting current density was calculated by adopting the classic Rosenberg and Tirrell equation,⁷ and considering the hydraulic diameter in the presence of spacer.⁸ Pressure drop through electrodialysis pair is calculated by the Darcy-Weisbach equation with a modified channel hydraulic diameter.⁸ The total pressure drop was obtained by using 0.5 as the ratio of the pair pressure drop to the total pressure drop.⁹ Other minor assumptions were also taken, including 90% of limiting current density used as the operating current density,¹⁰ 90% of voltage efficiency, 90% of coulombic efficiency, and 80% of pumping efficiency.

The readers should note that the presence of spectator anions $(SO_4^{2-} \text{ and } Cl^-)$ in real-world wastewater will lower the current efficiency, but reduce the required pair voltage (through raising

ionic conductivity). The exact impact of those spectator anions on energy consumption and cost estimation will depend largely on a variety of preconditions including the concentration ratio of spectator anions to NO_3^- , the composition of spectator anions, and the ionic selectivity against NO_3^- across the anion-exchange membrane. None of those preconditions is well established or widely accepted for NO_3^- -containing wastewater, and therefore the impact of spectator anions is not factored here in this work. For specific wastewater, the spectator anions should be considered for more accurate cost estimation.

2.2 TEA of NO₃⁻-to-NH₃ Conversion by Electrolysis in MFAEL

The TEA was performed for the NO_3^- -to- NH_3 conversion by electrolysis in MFAEL on account of the unit kmol- NH_3 produced from NO_3^- by electrolysis. LCC, OPEX, and then LTC were synergistically analyzed by sharing the key parameters. The hierarchical structure of the TEA in this study is presented in Fig. S30. The detailed TEA assumptions and results are shown in Fig. S31.

Unless otherwise specified, the following set of design and operational parameters was employed: 120 °C as cell temperature, NaOH/KOH/H₂O with 40 wt.% water content and equal molar NaOH and KOH as the electrolyte, 250 mA cm⁻² as current density, 2.7 V as cell voltage, 90% of faradaic efficiency for NO_3^- -to-NH₃ conversion, \$0.07 kWh⁻¹ as electricity price, and 83.3% of capacity factor (300 days per year for operation).

Energy consumption was also considered to be the sole source of the OPEX. In addition to electrolysis energy consumption, both heating energy consumption and mixing energy consumption were considered. Mixing energy consumption was analyzed by the McCabe and Smith method,¹¹ while the heating energy consumption was assumed as 5% of electrolysis energy consumption. Both density and viscosity of NaOH/KOH/H₂O electrolyte as functions of temperature were taken into account in light of Asdrubali's work.¹²

Capital cost analysis was performed based on a medium-size MFAEL stack with 100-L electrolyte capacity (50 cm \times 50 cm \times 40 cm). The electrodes were extended by 12 fins in total, with 2,800 cm² of surface area per fin (40 cm \times 35 cm per \times 2 sides), totaling the electrode area of 3.36 m². Specifically, the capital cost of manufacturing such 100-L MFAEL was obtained by first summing a) material costs, including all key components: cathode materials (nickel mesh), anode materials (nickel mesh), electrolyte constituents (NaOH and KOH), and cell body materials (PTFE as liner and stainless steel as shell); and then b) all major ancillary and auxiliary parts, including stirring motor/parts, gaskets, current collectors, power electronics, combined heat and power unit, and temperature conditioning. The cost of all identified materials/parts was found to be \$1,164 per system. The cost of all unidentified parts was assumed as 10% of that of all identified parts/materials. Then, 10% of cost contingency, 50% of sales markup, and 70% of system installation were added on top of the cost of all identified and unidentified parts/materials.¹³ The total capital expense (CAPEX) of such electrolyzer was found to be \$3,121 per system.

By means of the standard capital recovery method, the LCC for NO3RR associated with the total capital cost of \$3,121 per system was calculated to be \$0.97 per kmol-NH₃, on the following set of assumptions: 20 years of service time, 19% as the cost ratio of maintenance to the system (assumed to be the same as that of electrodialysis), 3% of annual discount rate,⁶ 83.3% of capacity factor (300 days per year for operation), and 90% of coulombic efficiency.

3. Supplementary Figures (S1–S41)

Fig. S1. A simplified representation of the N cycle. (a) The current N cycle with a growing imbalance between N_2 and Nr. (b) The proposed future NH₃-centric N cycle with enhanced Nr recycling, in which the NH₃ demand can be largely fulfilled by the conversion of existing Nr instead of the fixation of N₂. Through its utilization as an energy carrier (*e.g.*, in fuel cells), NH₃ can be converted back to N₂, closing the N cycle. Abbreviations: N_{org}, organic Nr compounds. Note that the anthropological N₂ fixation and denitrification processes are both accompanied by the unavoidable emission of considerable greenhouse gases: each N atom fixed by the Haber-Bosch process results in the generation of 0.375 CO₂ molecules (from the steam reforming reactions); each NO₃⁻-N atom requires 0.83 molecules of CO₂ to be fully denitrified to the harmless N₂ (assuming methanol as the carbon source). By switching toward the renewable NH₃-centric N cycle, these CO₂ emissions should be largely mitigated.

Fig. S2. Thermodynamic calculations of NO3RR and hydrogen evolution reaction (HER) paired with oxygen evolution reaction (OER). All thermodynamic parameters were obtained from Ref.¹⁴ (a) Dependence of thermodynamic cell voltage on temperature for different reactions, considering liquid (1) or gaseous (g) H_2O as the reactant, and aqueous (aq) or gaseous (g) NH_3 as the product. (b) Zoom-in view of (a) for NO3RR. (c) Comparison of thermodynamic cell voltage at different NH₃ partial pressures. 0.04465 and 0.004652 bar corresponds to the NH₃ partial pressure in MFAEL operated at 5 A and 500 mA, respectively, assuming 200 mL min⁻¹ of the carrier gas flow rate and 100% faradaic efficiency towards NH₃. Note: the calculations show that NO3RR is much more favorable than HER under alkaline conditions, and the cell voltage decreases with increasing temperature. At temperature higher than 30 °C, producing gaseous NH₃ is thermodynamically more favorable than aqueous NH₃. Liquid-phase H₂O as the reactant is thermodynamically more favorable than gaseous H₂O. Using a carrier gas to remove the produced NH₃ can shift the chemical equilibrium and thus make the reaction more thermodynamically favorable. These calculations justify our choice of reaction conditions in MFAEL: strong alkalinity to suppress HER; mildly elevated temperature with a continuous flow of carrier gas for the rapid evolution of gaseous NH₃; liquid water (40 wt.%) preserved in the electrolyte as the reactant.

Fig. S3. The MFAEL system for NO3RR. (a) Schematic diagram and (b) photo of the MFAEL system.

Fig. S4. NO3RR in the NaOH/KOH/H₂O electrolyte at varying current densities on Ni-based electrodes. The left and right y-axis show the faradaic efficiency of NH₃ and the conversion of NO₃⁻, respectively. For all measurements, the amount of added KNO₃ was equal to the theoretical amount of NO₃⁻ that can be fully converted to NH₃ based on the applied charge. (a) Comparison of NO3RR performance using two identical Ni mesh and Ni foam as electrodes at 5 A cm⁻². The geometric area of the electrodes was 1 cm². (b) NO3RR performance for current densities in the range of 100–500 mA cm⁻². (c) NO3RR performance with 5 A of applied current with different areas of the Ni mesh electrodes. The same electrode area was used for both cathode and anode.

Fig. S5. NO3RR in the NaOH/KOH/H₂O electrolyte at temperatures ranging from 80 to 200 °C. (a) Cell voltage profiles of the 2-hour constant-current electrolysis for NO3RR at 250 mA cm⁻². (b) The corresponding faradaic efficiency of NH₃ and the conversion of NO₃⁻⁷.

Fig. S6. Control experiments of NO3RR in the NaOH/KOH/H₂O electrolyte. From left to right: 1^{st} column, with 46.64 mmol of added KNO₃ and 5 A cm⁻² of applied current density. 2^{nd} column, with 46.64 mmol of added KNO₃ and no applied current. 3^{rd} column, with 5 A cm⁻² of applied current density and no added KNO₃. 4^{th} column, with 46.64 mmol of added KNO₃ and 200 mL min⁻¹ of H₂ feed, and no applied current. The reaction time was 2 h for all 4 experiments.

Fig. S7. Comparison of the results of NH₃ quantification by different methods: (a) indophenol colorimetry, (b) ¹H NMR, and (c) ion chromatography. The black squares represent the calibration solutions, and the red circles represent the sample solution. The sample solution was obtained from NO3RR in the NaOH/KOH/H₂O electrolyte at 5 A (500 mA cm⁻²) for 2 hours. Note that the 3 methods require different folds of dilution to satisfy their measurement ranges (colorimetry: 5,120-fold; ¹H NMR: 2,560-fold; ion chromatography: 80-fold). (d) Comparison of the calculated FE towards NH₃ determined by different methods.

Fig. S8. Faradaic efficiency of H_2 for NO3RR in the NaOH/KOH/H₂O electrolyte at 250 mA cm⁻² determined by online GC. Note: the average FE towards H₂ during 2-hour NO3RR electrolysis was 5.35%. This agrees well with the high FE towards NH₃ (92.2%) under this condition, suggesting that HER in the NaOH/KOH/H₂O electrolyte is largely suppressed in the presence of NO₃⁻. FE towards H₂ decreased in the initial period of electrolysis, which could be due to the formation of nanostructured Ni on the cathode. The increase in FE(H₂) after 80 min is because of the consumption of NO₃⁻ (the overall NO₃⁻ conversion was 95.5%).

Fig. S9. NH_3 FE and NO_3^- conversion of NO3RR in the NaOH/KOH/H₂O electrolyte at 500 mA cm⁻² with different carrier gases. Air was pre-scrubbed in 0.1 M KOH to remove trace CO₂ before entering the MFAEL.

Fig. S10. NO3RR in a divided H-type cell system. The cathode and anode chambers were separated by a PTFE mesh ($0.025'' \times 0.005''$ opening) to prevent the gas crossover. KNO₃ was initially added to the cathode chamber, and electrolytes in both chambers were bubbled with 100 mL min⁻¹ of N₂ as the carrier gas into two separate H₂SO₄ absorbing solutions; other operating conditions were kept the same as the undivided MFAEL reactor. (a) Photo of the divided cell system. (b) Cell voltage profiles of the 2-hour constant-current electrolysis at 250 mA cm⁻². (c) Distribution of the reactant and products from the cathode and anode chambers. Note: at 250 mA cm⁻², the divided cell that is free of gas crossover produced NH₃ at the same level of high FE (86.7%) as the undivided MFAEL reactor (92.2%). The cell voltage was higher compared to the undivided reactor due to the separator and the larger distance between the electrodes. The vast majority of produced NH₃ was collected from the cathode side, suggesting the rapid evolution of NH₃ from the NaOH/KOH/H₂O electrolyte.

Fig. S11. Effect of electrolyte composition on the NO3RR performance in MFAEL. For the ternary NaOH/KOH/H₂O electrolyte, 40, 91, and 99 wt.% of water correspond to 15, 2 M, and 0.2 M OH⁻, respectively. (a) Comparison of NO3RR performance at 100 mA cm⁻² in the ternary electrolyte (NaOH/KOH/H₂O with 1:1 molar NaOH/KOH) and binary electrolytes (NaOH/H₂O and KOH/H₂O). The OH⁻ concentration was 15 M for the ternary and binary electrolyte with different alkalinity. (c) Distribution of produced NH₃ in the MFAEL systems with different alkalinity after 2-hour electrolysis. The orange and green portions of the columns show the percentage of NH₃ detected in the absorbing solution and the electrolyte, respectively. (d) NO3RR in the 2 M electrolyte with different alkalis. Note: with increased water content, more NH₃ was retained in the electrolyte instead of being carried out by the flow of carrier gas. In our measurements, we kept the system with gas bubbling for an additional 30-minute period after electrolysis, which was found to be sufficient to deplete the remaining NH₃ in the electrolyte with 40 wt.% of water.

Fig. S12. SEM images of Ni mesh electrodes. (a) Bare Ni mesh before electrolysis. (b) Ni mesh cathode and (c) anode after NO3RR measurement in the NaOH/KOH/H₂O electrolyte at 5 A cm⁻². (d)–(f) The corresponding images of (a)–(c) at higher magnification. Note: from the SEM images, no considerable structural change was observed for the anode after electrolysis in the NaOH/KOH/H₂O electrolyte. The cathode surface shows some nanostructured features, which is a combination of ~100 nm particles and hexagonal flakes with a diameter of 1–2.5 μ m.

Fig. S13. Photo of the bare Ni mesh electrode (left) and the post-electrolysis Ni mesh cathode (right).

Fig. S14. SEM-EDS analysis of Ni mesh electrodes. (a) SEM image of the post-electrolysis Ni mesh cathode. (b)–(c) The corresponding elemental mappings of Ni and O. (d) EDS of the entire region (sum) and two selected areas of (a). (e) EDS of the bare Ni mesh and the post-electrolysis Ni mesh cathode. (f) Atomic percentages (at.%) of different elements for the bare and post-electrolysis Ni mesh electrodes determined by SEM-EDS. Note: SEM-EDS shows a considerable increase in O content for the Ni cathode after electrolysis in the NaOH/KOH/H₂O electrolyte, but only a slight increase for the anode. The ~100 nm particles and 1–2.5 μ m hexagonal flakes correspond to nickel oxides with different degrees of oxidation with Ni/O ratios of 3.66 and 0.72, respectively.

Fig. S15. SEM images of Ni foam electrodes. (a) Bare Ni foam before electrolysis. (b) Ni foam cathode after NO3RR measurement in the NaOH/KOH/H₂O electrolyte at 5 A cm⁻². (c)–(d) The corresponding images of (a)–(b) at higher magnification.

Fig. S16. SEM-EDS analysis of the post-electrolysis Ni foam cathode. (a) SEM image of the postelectrolysis Ni foam cathode. (b)–(c) The corresponding elemental mappings of Ni and O. (d) EDS of the entire region (sum) and two selected areas of (a). (e) Atomic percentages (at.%) of different elements for the post-electrolysis Ni foam cathode determined by SEM-EDS.

Fig. S17. Characterization of Ni electrodes before and after electrolysis in the NaOH/KOH/H₂O electrolyte. (a) XRD patterns of the bare Ni mesh and post-electrolysis Ni mesh electrodes. (b) Raman spectra of the bare Ni foam and post-electrolysis Ni foam electrodes. (c)–(d) Ni 2p XPS spectra of (c) the bare Ni foam and (d) post-electrolysis Ni foam electrodes. Note: for the post-electrolysis cathode, no emerging XRD peaks of nickel oxides or hydroxides were observed. Raman spectra show weak but identifiable signals at 450 and 3580 cm⁻¹, corresponding to the stretching modes of Ni–OH and O–H bonds, respectively.¹⁵ XPS spectra show the apparent transformation from a mixture of metallic Ni and its oxides/hydroxides for the bare Ni foam surface, to a hydroxide-only surface for the post-electrolysis Ni foam cathode. These observations strongly suggest the formation of a Ni(OH)₂ layer on the Ni cathode surface after electrolysis in the NaOH/KOH/H₂O electrolyte.

Fig. S18. Measurement of roughness factor (RF) of (a)–(b) Ni mesh and (c)–(d) Ni foam cathodes before and after electrolysis in the NaOH/KOH/H₂O electrolyte by cyclic voltammetry in 1 M KOH. (e)–(f) The corresponding capacitive currents at different scan rates for (e) Ni mesh and (f) Ni foam cathodes. The capacitive currents at -0.15 V *vs.* Ag/AgCl were used for RF calculation. Note: from the slope of (e) and (f), it was found that after electrolysis in the NaOH/KOH/H₂O electrolyte, the RF increases by 1.11 and 1.69 times for the Ni mesh and Ni foam cathode, respectively.

Fig. S19. SEM images of Cu mesh electrodes. The anode was a Ni mesh electrode. (a) Bare Cu mesh before electrolysis. (b) Cu mesh cathode after NO3RR measurement in the NaOH/KOH/H₂O electrolyte at 5 A cm⁻².

Fig. S20. SEM-EDS analysis of the post-electrolysis Cu mesh cathode. The anode was a Ni mesh electrode. (a) SEM image of the post-electrolysis Cu mesh cathode. (b)–(d) The corresponding elemental mappings of Cu, Ni, and O. (e) EDS of the entire region (sum) of (a). Note: SEM imaging and EDS suggest the deposition of nanostructured NiO_x on the Cu mesh cathode after electrolysis in the NaOH/KOH/H₂O electrolyte. The Ni content on the post-electrolysis Cu mesh surface was 18.4 at.% (determined by SEM-EDS). Therefore, formation of the cathodic nanostructure should be attributed to the migration of Ni from anode to cathode during the electrolysis.

Fig. S21. Comparison of NO3RR on Ni foam cathode with different anodes. (a)–(b) SEM images of the post-electrolysis Ni foam cathode with (a) Ni foam and (b) graphite rod as the anode. (c) NH₃ FE at 5 A cm⁻² on Ni foam cathode with different anodes. The diameter of the graphite rod was 1/4'', and its active area in the electrolyte was ~8.9 cm².

Fig. S22. Electrochemical NH₃ production by NO3RR in the scaled-up MFAEL system. (a) Photo of the scaled-up MFAEL system with a reactor capacity of 2.5 L. (b) Photo of the cell cap for the scaled-up MFAEL reactor. (c) Photo of the post-electrolysis Ni mesh electrodes. The darker color of the cathode suggests the formation of nanostructured NiO_x as a similar observation to the 100 mL reactor (Fig. S13).

Fig. S23. Obtaining pure NH₃-based chemicals by using different absorbing solutions for the MFAEL system. (a) NH₃ collection efficiency for different absorbing solutions (100 mL for each): 0.5 M H₂SO₄, CO₂-saturated water (5 °C), and water (5 °C). The collection efficiency was determined by bubbling the outlet gas of the absorbing solution into an acidic solution (0.1 M H₂SO₄), and determining the ratio of NH₃ content between the absorbing solution and the acidic solution. Note that the NH₃ concentration in CO₂-saturated solutions was quantified by ¹H NMR due to the pH-sensitive nature of the colorimetric method. (b)–(c) Photos of the NH₄HCO₃ precipitate and obtained powder product by feeding the outlet gas from the scaled-up MFAEL into CO₂-saturated water at 5 °C.

Fig. S24. The NH₃ fuel cell configuration, including end plates (1, 1'), current collectors (2, 2'), flow-field plates (3, 3'), gaskets (4, 4'), anode gas diffusion layer (5, PtIr/C on hydrophilic carbon cloth), cathode gas diffusion layer (5', Pt/C on carbon paper), and anion-exchange membrane (6, Tokuyama A201).

Fig. S25. Working principles of NO_3^- concentrating and the experimental electrodialysis system. (a) Schematic illustrating the working principles of NO_3^- concentrating via electrodialysis with one electrodialysis pair (CEM | diluate solution | AEM | concentrate solution), and one additional CEM (part of background cell). (b) Photo of our experimental electrodialysis system in operation encompassing one electrodialysis cell, two peristaltic pumps, and three solution containers (diluate, concentrate, and electrode solutions).

а

Fig. S26. The voltage profiles of one electrodialysis pair along with electrodialysis time for NO_3^- concentrating at 2 mA cm⁻². Note: a single electrodialysis pair is constructed by the configuration of "CEM | diluate | AEM | concentrate" in which the CEM and the AEM are FKA-PK-130 and FAA-PK-130, respectively, both from Fuma-Tech; and the diluate and the concentrate are 7.14 mM KNO₃ (containing 100 ppm NO_3^- -N) and 2 M KNO₃ (28,000 ppm NO_3^- -N), respectively. The key experimental conditions include: 5 cm² as the effective pair area (defined as the single surface of one membrane in the electrodialysis pair), 2 mA cm⁻² as the electrodialysis current density, 10 cm s⁻¹ as the nominal fluid velocity for all channels (60 mL min⁻¹), 0.5 mm as the distance between CEM and AEM in the electrodialysis pair, and 75% as the designed NO_3^- removal (1,722 s).

Fig. S27. Hierarchical structure of the TEA for NO_3^- concentrating by electrodialysis.

Name	S	wmbol	Value	1	Init M	ote	Source				
OPEX-electrodialysis	0	PEX-ed	1.46	\$/km	ol-NO3-	Guite					
OPEX-pumping	C	DPEX-p	0.56	0.56 \$/kmc							
OPEX-others	C	DPEX-o	0.20	0.20 \$/kmo		ssuming 10% of the sum of OPEX-pumping and	OPEX-electrodialysis				
Operational Expense (OPEX)	_	OPEX	2.23	2.23 \$/kmol-		PEX = OPEX-p + OPEX-e + OPEX-o					
Levelized Capital Cost (LCC)		LCC	3.52	\$/km	ol-NO3- (ontaining maintenance expense (a form of OPEX)				
Levelized Total Cost (LTC)	Comb		5.75	5/Km	DI-INU3- IL	TC=LCC+OPEX	C				
Number of pairs	n	250	e un	π	NOLE		Source				
Effective membrane-pair area	ective membrane-pair area A-pair 448			pair							
Total effective membrane-pair area	A-stack W	k 112 13/	m2/st	ack							
Membrane height/depth	Н	33.	i crr								
Membrane distance	d	0.0	i crr		Cubic stad to	tetal minimization					
Area spacer porosity	۷. ٤-a	60		8	Subjected is	iotal cost minimization					
Adjusted average velocity	٧.,	6.7	cm	s							
AEM area resistance	R-AEN	1 2.5	Ωcn	12							
Initial source concentration in ppm	Cs	100	DDm N	12 03-N	ppm NO3I	I = ma NO3N/L					
Initial source concentration in mM	Cs	7.1	l ml	1	100 ppm-N	03N/L = 7.14 mM					
Recovery efficiency Final dilute concentration	Cd	1.43	% 3 m/								
Average source concentration	Cs*	4.2) mN	i							
Average source conductivity	σ-Cs°	0.4	3 mS/c	m J	σ = σ0*C*(-	0.0315*lgC*2-0.2336lgC+0.5529), σ0 = 121.55 mS/cm	CRC Handbook				
Volume spacer porosity	K-US	90	5 D01	IZ							
Adjusted average diluate resistance	R-Cs°	" 114	7 Ωcn	12	σ = σ0*C*(-	0.0315*lgC^2-0.2336lgC+0.5529), σ0 = 121.55 mS/cm	CRC Handbook				
Average concentrate concentration	Cc°	200	0 mN	mM (M as target concentration in concentrate					
Nominal average concentrate resistance	R-Cc°	0.4	 mS/0 β Ωcn 	all 12							
Adjusted average concentrate resistance	R-Cc°	" 0.4	3 Ωcn	Ωcm2							
Area resistance per effective pair Resistance factor	R-pair fD	r 120	2 Ωcm	Ωcm2		EM + K-CEM + R-Cs ^{or} + R-Cc ^{or}					
Overall area resistance per effective pair	R-pair	132	2 <u>Ω</u> cn	12	R-pair' = R-	air*R					
Diffusion coefficient of NO3-	D-NO3	0.0000	177 cm2	/s	D = D°*(-0.0	315*lgC*2-0.2336lgC+0.5529), D°= 1.90 x 10*-5 cm2/s	CRC Handbook				
Average limiting current density Average current density	iL°	2.07	1 mA/c 5 mA/c	m2 m2	iL* = 4.66*F i = iL°*0.9	Us~(U^2/3)*(V~/d*H)^1/3	Kosenberg and Tirrell method (1957) Environ, Sci. Water Res, Tech 2019 5 1172				
Total average stack-current	ls	8.3	i A		0.0						
Donnan potential across membrane pair	φDon	0.31	5 V		φDon = 2*0	059*lg(Cc°/Cs°)	Hembranes 2024 11 917				
Nominal electrodialysis voltage per pair	E-pair E-stack	k 140	4 V		E-pair = iL*i E-pair = i*R	epair + φρ0π pair*n	memoralles, 2021, 11, 211.				
Voltage efficiency	VE	80	%		Assuming 8	0% of voltage efficiency					
Adjusted electrodialysis voltage per stack	E-stac	k' 175. k 1464	4 V 9 W		E-stack' = E	stack/VE					
Daily operation time	t	24									
Coulombic efficiency	CE	90	%	%							
Daily production rate of NO3- in mote	r-mass-	-d 104	kg-NO3	-/day	2-5 M depe	nding on requirement					
Daily electrodialysis energy	Ee	35.1	i7 kWh∕	kWh/day		× .					
Energy intensity from electrodialysis		20.9	0 kWh/kmc	I-NO3-							
Electrodialysis energy cost	OPEX-	ed 1.4	5 \$/kmol-	NO3-							
Name		Symbol	Value		Unit	Note	Source				
Number of pairs Effective membrane-pair area		A-pair	250	-	cm2/pair						
Total effective membrane-pair area		A-stack	112		m2/stack						
Membrane width			134	_	cm						
Membrane distance		d	0.05		cm						
Nominal average velocity		۷°	4		cm/s		Membranes, 2021, 11, 217.				
Area spacer porosity Adjusted average velocity		ε-a V°'	6.7	-	cm/s						
Adjusted channel diameter		dch	0.023		cm	$dch = 4^{*} \epsilon / [(2/d) + (1-\epsilon)^{*}(8/d)]$	Energy Procedia, 2012, 20, 170.				
Re Elow rate per pair		Re	33.3	_	L/min	Re = ρ*V***d/μ, Re <= 1,400, ρ = 1,000 kg	/m3				
Flow rate per stack		Q	670		L/min						
Pressure drop per pair Pressure drop factor		Δp-ch 20130		_	Pa	delta-P = 48*μ*V°**H/(dch^2), μ = 0.001 F	Pa.s J Membrane Sci, 2014, 462, 96.				
Total pressure drop		Δp 4026			Pa	$\Delta p = \Delta p - ch/fp$	5 Membrane Sci, 2014, 402, 50.				
Hydraulic power		Ph	449.57	_	W	Ph = Δp*Q					
Pumping power	-	Рр	561.96		w	Pp = Ph/np					
Initial source concentration		Cs	7.14		mM	100 ppm-NO3N/L = 7.14 mM					
Final dilute concentration		Cd	80		mM	Assuming 80% of recovery efficiency					
Average source concentration		Cs* 4.29			mM	and here NC2					
Source volume per 1 kmol-NO3- rec Average current density	overy	Vs*	1/5.0	175.0		per 1 kmol-NO3- recovery					
Total average stack-current		ls	s 8.35		A						
Daily operation time Coulombic efficiency		t 24 CE 90		-	h %						
Daily production rate of NO3- in mole		r-mol-d	1.682	1.682 kn		lay					
Daily production rate of NO3- in mass	s I	r-mass-d 104.3		kg-NO3-/d		ay 2-5 M depending on requirement					
Daily pumping energy consumption		Ep	Ep 13.487		kWh						
Pumping energy intensity Electricity cost			8.02	kW	h/kmol-N	03-					
Pumping energy cost		OPEX-p	0.56	\$	/kmol-NO	3-					
Name	Symb	ool Va	lue	Unit	Note		Source				
Cost of commercial electrodialysis system	Ccap-	ED 35,	000 \$/	system	Hang	hou lontech Environmental Technology Co., Lt	d Alibaba.com				
Number of pairs	n 1//	2	0	pair							
Dimension of membrane - height	H	1	50	cm							
Gross membrane-pair area	A'-pa	air 64	00 cr	n2/pair							
Effective-to-gross area ratio	β	ir 4	70 %		-						
Total effective pair-area per stack A-s			4480 cm2/ 112 m2/st								
Average current density		aux 112 m2 1.86 m/		A/cm2							
Total average stack-current		8	35	A							
Coulombic efficiency C Daily production rate of NO3-		- 9 -d 19	0 682 kmol	%							
Capacity factor		8	3.3 KIIO	%	300 d	iys a year					
Annual production rate of NO3-	r-mol	-a 5	11 kmol-	NO3-/y	rear rmol-a	= rmol-d*365*CF					
Cost ratio of maintenance to system	Y	ED (1	9	%	19%, 1	ased on the average of 27% and 11%	J. Environ. Qual., 2017, 46, 1528.				
Cost of total maintenance (Total present value of cost (TPVC)		- <u>EU 6t</u> C 41	650	\$		emenwepair or some membranes & parts = Ccap-ED + Cmain-ED	J. Environ. Qual., 2017, 46, 1528. Water Resour. Econ., 2013, 2-3, 30				
Time of service		4	0	, s year			Traior Nesour. Louit., 2013, 2-3, 30.				
Annual discount rate	α	α 3 %			3% for	real and 2.5% for nominal	2013 publication: NISTIR - 85-3273-28				
Capital recovery factor (CRF)		- U.O 1.00	433	\$	ECA -	m (1 + α)°m/((1 + α)°m - 1) TPVC*CRE	Water Resour Econ 2013 2-3 20				
THE REPORT OF THE PARTY OF THE	EUA 180		.88 \$		ILUN -		water Resour. Econ., 2013, 2-3, 30.				

Fig. S28. TEA results for NO_3^- concentrating by electrodialysis. Summary (top) and detailed calculations and assumptions (bottom) for OPEX components and LCC.

Fig. S29. The impact of electricity price on LTC and OPEX for NO_3^- concentrating by electrodialysis (assuming 100 ppm NO_3^- -N of diluate, and 80% of designed NO_3^- recovery).

Fig. S30. Hierarchical structure of the TEA for NO₃⁻-to-NH₃ conversion by electrolysis in MFAEL.

Name	Symbo	I Valu	e Unit	Note	Source		
OPEX-electrolysis	OPEX-e	45.0	3 \$/kmol-NH	13			
OPEX-mixing	OPEX-n	n 0.17	\$/kmol-NH	13			
OPEX-heating	OPEX-ł	n 2.25	\$/kmol-NH	13			
Operational Expenses (OPEX)	OPEX	47.4	5 \$/kmol-NH	3 OPEX = OPEX-el + OPEX-m + OPEX-h			
Levelized Capital Cost (LCC)	LCC	0.97	\$/kmol-NF	13 Containing maintenance expense (a form of OF 12 LTC = LCC + OPEX	'EX)		
Levelized Total Cost (LTC)		40.4		S LIG-LGG+OPEA			
Name Electrode area per fin	A-fin	2800	cm2/fin	Note 40 cm x 35 cm x 2	Source		
Number of electrode fins	n	12	fin/cell	I GUILAGO GUILA			
Total area of electrode	A-cell	33600	cm2/cell				
Current density	j Looll	250	mA/cm2				
Number of cells per pack	m	1	Algeli				
Operation temperature	T	120	оС				
Cell voltage	E	2.70	V				
Power of electrolysis H	2-electrolysis	22.68	kW				
Coulombic efficiency	CE	90	%				
Daily production rate of HN3 in mole	r-mol-d	0.846	kmol-NH3/day				
Daily production rate of NH3 in mass	r-mass-d	14.4	kg-NH3/day				
Energy intensity from electrolysis	Ee	643.23	KVVn/day Wh/kmoLNH3				
Electricity cost		0.070	\$/kWh				
OPEX-electrolysis	OPEX-el	45.03	\$/kmol-NH3				
Durch	-	1.51	-12	- 4 C40C4 0 00000T	0*		
Viscosity	ρ	1.01	g/cr/t3 mPais	p = 1.01001 - 0.000811 u = 2341 3*(T*^(-1.492))	See *		
Diameter of impeller	di	15.00	cm	p ====================================	~~~		
Rotation frequency	rps	5.00	round/s				
Reynolds # (Re)	Re	92074		Re = di^2*rps*d/µ, Re < 10			
Froude # (Fr) Power # P0	P0	0.3823		r = p rps^2/g, g = 9.81 m/s2 P0 = 6 when Re > 6.000	Food Process Engineering and Technology 2000		
Power of stirring	P-stirring	0.086	kW	P = P0*di^5*rps^3*p	and the second se		
Daily stirring energy	Es	2.07	kWh	• •			
Energy intensity from stirring	0.051	2.45	Wh/kmol-NH3				
OPEX-mixing	OPEX-s	0.17	\$/kmol-NH3				
Power of heating	P-heating	1.134	kW	5% of electrolysis power			
Daily stirring energy	Es	27.22	kWh	7 1			
Energy intensity from heating	00524	32.16	Wh/kmol-NH3				
Operational Expenses (OPEX)	OPEX-h	2.25 A7 A5	\$/kmol-NH3 \$/kmol-NH3				
* Proceedings of International conference	: CFCs; F. CO1	ANA, ASDR	UBALI F, & SANT	ARPIA L (1994). Thermophysical properties of H2O-Na	OH-KOH mixtures: experimental data.		
Name	Symbol	Value	Unit	Note	Source		
Power rating per cell	Pcell	22.77	kW				
Total area of electrode	A-cell	3.360	m2/cell				
Price of cathode materials	C-cm	29.97	\$/m2 \$/cell	Nickel cloth with 200 mesh count, current price	www.made-in-china.com		
Price of anode material	0-011	29.97	\$/m2	Nickel cloth with 200 mesh count, current price	www.made-in-china.com		
Cost of anode materials	C-am	100.70	\$/cell				
Volume of NaOH-KOH-H2O electrolyte	Ve	100	L alom2	50 cm x 50 cm x 40 cm			
Weight of NaOH-KOH-H2O electrolyte	P	37.87	ka/cell	25wt% in NaOH based on 40wt% in H2O			
Price of NaOH		282	\$/ton-NaOH	Five-year average 2016-2020	tradingeconomics.com		
Cost of NaOH		10.68	\$/cell				
Weight of KOH		53.01	kg/cell	35wt% in NaOH, based on 40wt% in H2O	www.ctaticta.com		
Cost of KOH		12.49	\$/cell	rite-jear average 2010-2020	www.statista.com		
Cost of NaOH-KOH-H2O electrolyte	C-electrolyte	23.17	\$/cell				
Volume of PTFE		0.0125	m3/cell	50 cm x 50 cm x 40 cm @ 1 cm			
Price of cell body - PTEF		27.5	kg/cell \$/ton	2017 price	www.statista.com		
Cost of cell body - PTFE	C-body	357.50	\$/cell				
Volume of stainless steel		0.0125	m3/cell	50 cm x 50 cm x 40 cm @ 1 cm			
Weight of stainless steel		97.5	kg/cell	Based on 7.8 g/cm3 of stainless steel density	unus focue aconomice com		
Cost of cell body - stainless steel	C-liner	52.22	\$/cell	n no-youl areitage 2010-2018	www.roowareconormica.com		
Power of stirring	Р	86	W				
Cost of stirring motor and parts	C-stirrer	47.50	\$/cell	100-W motor, and corrosion-resistant rod/blades	picclick.com		
Cost of coolant gaskets	C-gasket C-assembly	37.00	S/cell		Strategic Analysis Report: \$37/stack		
Cost of temperature conditioning	C-conditioning	42.00	\$/cell		Strategic Analysis Report: \$42/stack		
Cost of current collectors	C-collector	4.00	\$/cell		Strategic Analysis Report: \$4/stack		
Cost of Balance-Of-Plant (BOP)	C-BOP	29.40	\$/cell		Strategic Analysis Report \$29.44/stack		
Cost of Power Electronics (PE)	C-PE	325.90	\$/cell		Strategic Analysis Report: \$325.90/stack		
Cost of all identified materials and parts	C-m&p	1163.70	\$/cell		Strategic Analysis Report		
Cost of all other parts and minor materials	C-others	116.37	\$/cell	10% of all identified materials and parts			
Cost Contingency Sales Markup (SM)	C-CC C-SM	128.01	\$/cell	10% of the cost of all materials and parts	Strategic Analysis Report		
Cost of System Installation	C-SI	896.05	\$/cell	70% of the cost of all materials and parts a sales markup	Strategic Analysis Report		
Capital Expenses, CAPEX	CAPEX	3120.80	\$/cell				
Average current density	1	250	mA/2				
Total average stack-current	ls	250	A MAYCINZ				
Coulombic efficiency	CE	90	%				
Daily production rate of NH3	r-mol-d	0.846	kmol-NH3/day	202.1			
Capacity factor	CF	83.33	%	300 days a year			
Cost ratio of maintenance to system	V	19	%	Assuming 19% fo total capital cost			
Cost of total maintenance	Cmain-El	592.95	S	Replacement/repair of some electrodes & parts	J. Environ. Qual., 2017, 46, 1528.		
Total present value of cost (TPVC)	TPVC	3,714	S	TPVC = Ccap-ED + Cmain-ED	Water Resour. Econ., 2013, 2-3, 30.		
Annual discount rate	t 	20	year %	3% for real and 2.5% for nominal	2013 nublication: NISTIR - 85-3273-28		
Capital recovery factor (CRF)	CRF	0.0672	//	$CRF = m^{(1 + \alpha)^{m}/((1 + \alpha)^{m} - 1)}$	2010 publication. No.111 - 00/0210/20		
Equal annual cost (EAC)	ECA	249.62	\$	ECA = TPVC*CRF	Water Resour. Econ., 2013 , 2-3, 30.		

Fig. S31. TEA results for NO₃⁻-to-NH₃ conversion by electrolysis in MFAEL. Summary (top) and detailed calculations and assumptions (bottom) for OPEX components and LCC.

Fig. S32. The energy consumption of NO3RR as a function of the cell voltage (with 5% heating-to-electrolysis ratio).

Fig. S33. LTC, OPEX, and LCC of NO3RR in \$ per kmol-NH₃ along with the electrolytic current density (assuming 2.7 V of cell voltage and 0.07 kWh^{-1} of electricity price).

Fig. S34. Product investigation on the conversion of organic Nr compounds in the NaOH/KOH/H₂O electrolyte by ¹³C NMR. Electrolysis was carried out with ¹³C-labeled chemicals (4.2 mmol for glycine, or 6.7 mmol for alanine) for 1 h. (a) NMR spectra of the electrolyte after reaction with different ¹³C-labeled reactants: (1) glycine-2-¹³C, (2) alanine-3-¹³C, and (3) alanine-1-¹³C. (b) The identified half-reaction equations for (1)–(3). The isotopically labeled ¹³C atoms are colored red, and the bond cleavages are represented by the dashed lines.

Fig. S35. Conversion of organic Nr compounds in the NaOH/KOH/H₂O electrolyte under different operating conditions. All tests were carried out for 2 h under the conditions specified in the figures. Oxalate production was determined by HPLC. (a) FE towards NH₃ and oxalate at different current densities with glycine as the reactant. (b) Effect of alkalinity (water content) on the production of NH₃ and oxalate from glycine. (c) NH₃ production from the conversion of glycine, alanine, and β-alanine. (d) Control experiments with 18.7 mmol of glycine as the reactant in the NaOH/KOH/H₂O electrolyte. From left to right: 1st column, with 100 mA cm⁻² of applied current density. 2nd column, without applied current. 3rd column, with 200 mL min⁻¹ of O₂ feed, and no applied current. Note: these results suggest that under the operating conditions of MFAEL, the ratio of NH₃ and oxalate production is close to 1, agreeing with the results from 1³C NMR (Fig. S34). High alkalinity and electricity are indispensable for the efficient conversion of C–N bonds, and such a process is not an O₂-mediated non-faradaic process. The secondary amine (alanine) shows a higher NH₃ production rate than the primary amine (glycine), and amine groups at α-C (such as amino acids) are much more reactive compared to those with longer carbon chains (such as β-alanine). These trends agree with the screening test results at 200 °C (Fig. 6b and Table S3).

Fig. S36. Electrolysis in the NaOH/KOH/H₂O electrolyte with a commercial protein powder (Orgain). The content of N is 8.90 wt.% (determined by a combustion elemental analyzer). The reaction time was 2 h. (a) NH₃ production with and without 100 mA cm⁻² of applied current density. (b) HPLC graphs of the electrolyte after reaction with and without 100 mA cm⁻² of applied current density. (c) The suggested pathway for the conversion of different forms of Nr to NH₃ in the NaOH/KOH/H₂O electrolyte. Note: the protein powder sample contains various forms of Nr. As it was added into the electrolyte in MFAEL, NH₃ evolved instantly without applying current. As shown in the first step in (c), production of this NH₃ (colored green) should be contributed to the hydrolysis reaction of low-valent N (NH₄⁺ ions and primary amide groups) in the sample, which occurs readily under the MFAEL operating conditions (high alkalinity and elevated temperature). Comparing the NH₃ production by 33%, which is due to the oxidation of Nr in amino acids. Meanwhile, the carboxylic acid product (oxalate as identified in HPLC) is produced only with an applied current, verifying that the oxidation-assisted NH₃ production (by the cleavage of C–N bonds) requires the participation of electricity [colored red in (c)].

Fig. S37. Detection of O_2 for the conversion of organic Nr in the NaOH/KOH/H₂O electrolyte by online GC. Helium gas was used as the carrier gas for both MFAEL and GC. GC graphs with thermal conductivity detector (TCD) during the electrolysis with (a) alanine and (b) KNO₃. Production of O_2 from OER is apparently suppressed in the presence of organic Nr (alanine), while it remains stable in the absence of organic Nr.

Fig. S38. Detection of volatile carbon-containing products for the conversion of organic Nr in the NaOH/KOH/H₂O electrolyte by online GC. Helium gas was used as the carrier gas for both MFAEL and GC. GC graphs with flame ionization detector (FID) during the electrolysis with (a) alanine and (b) protein powder. (c) GC graph of the standard 1% gas mixture of CO, CH₄, CO₂, C_2H_2 , C_2H_4 , and C_2H_6 (in N₂ balance), with the same zoom scale as (a) and (b). Despite its ppm-level sensitivity, no known volatile carbon-containing product was detected by FID during the conversion of organic Nr, indicating that carbon is retained in the electrolyte.

Fig. S39. Electrolysis with different Nr compounds containing N–O or C–N bonds. KNO₃ (9.3 mmol) and alanine (18.7 mmol) were chosen as the model chemicals containing N–O and C–N bonds, respectively. The reaction time was 2 h. (a) LSV curves for the NaOH/KOH/H₂O electrolyte containing different forms of Nr. (b) The FE towards NH₃ (single-electrode basis) for the electrolysis with different added Nr compounds. From left to right: 1st column, containing N-O bonds only; 2nd column, containing C-N bonds only; 3rd column, containing both N-O and C-N bonds. (c) Comparison of NH₃ production determined between ¹H NMR and colorimetry at different stages of electrolysis for the system containing ¹⁵N–O and C–¹⁴N bonds. (d) NH₃ production with and without 100 mA cm⁻² of applied current density. Note: ¹H NMR suggested that NH₃ comes from the cleavage of both N-O and C-N bonds. Comparison of different quantification methods shows the accuracy of both ¹H NMR and colorimetry methods. Compared to the system with only one added component, the FE of NO3RR slightly decreases (84.0% vs. 72.3%), while the FE of alanine oxidation increases considerably (12.3% vs. 52.1%). Such a synergetic effect for the paired system is possibly due to the difference in electrode potentials. The synergy could also come from the suppression of certain side reactions (such as HER or OER) that affect the reaction pathway towards NH₃ by stabilizing or destabilizing the reaction intermediates.

Fig. S40. Quantification of carbon and nitrogen-containing products for the paired electrolysis with KNO₃ and alanine in the NaOH/KOH/H₂O electrolyte. (a) ¹H NMR spectrum of the electrolyte after reaction, showing the protons in the reactant alanine and product acetate. (b) Balance of the nitrogen element. (c) Comparison of the total amount of alanine and acetate before and after electrolysis. Note: before electrolysis, 18.66 mmol of alanine (C₃H₇NO₂) and 9.33 mmol of NO₃⁻ were added into the system; after electrolysis, 11.52 mmol of alanine (C₃H₇NO₂), 3.41 mmol of acetate (CH₃COO⁻), 0.87 mmol of NO₃⁻, and 1.23 mmol of NO₂⁻ were detected in electrolyte; and 10.94 mmol of NH4⁺ was detected in the absorbing solution. Note that we are unable to quantify CO_3^{2-} in the electrolyte, and we assume its production follows the chemical equation in Fig. S34 (1:1 molar acetate and CO_3^{2-}), which is supported by our qualitative ¹³C NMR measurement. These results suggest that our system has the carbon and nitrogen elemental balance of \geq 80%. None of the volatile carbon-containing products (CO, CH₄, CO₂, C₂H₄, C₂H₂, and C₂H₆) was detected by gas chromatography throughout the electrolysis (Fig. S38). Therefore, the unbalanced portion of carbon and nitrogen could be due to the possible intermediate species unidentified by ¹H NMR, apart from the cumulative measurement errors. Also, further oxidation of acetate to CO_3^{2-} could occur, resulting in the lower apparent carbon balance value. Below are the balances for nitrogen and carbon elements:

The balance of nitrogen element is: $(11.52 + 0.87 + 1.23 + 10.94) \div (18.66 + 9.33) = 87.8\%$ The balance of carbon element is: $(11.52 \times 3 + 3.41 \times 2 + 3.41 \times 1) \div (18.66 \times 3) = 80.0\%$

Fig. S41. Comparison of NO3RR performance on different metal foil cathodes in the NaOH/KOH/H₂O electrolyte. For a fair comparison, the dimensions of the metal foils were kept identical exactly as 1×1 cm² and 1 mm thickness. A graphite rod (~8.9 cm²) was used as the anode to avoid the impact of re-deposited metal species dissolved from the anode. The applied current was 1,000 mA. Note: the FE towards NH₃ on four metal foils shows the following trend: Co > Ru > Ni > Cu; and for the average cell voltage: Co < Ni < Ru < Cu. Note that the performance was lower on these metal foils than mesh and foam electrodes, because of the significantly limited surface area available for electrochemical reaction. These results suggest that future development of cathode materials could further improve the cell performance.

4. Supplementary Tables (S1–S3)

Ref.	Catalyst	Electrolyte	NH ₃ production rate (mol cm ⁻² s ⁻¹)	<i>j</i> (NH ₃) (mA cm ⁻²)	FE to NH ₃ (%)	Potential/Voltage (V _{RHE})	Cell configuration	
	commercial Ni foam	NaOH/KOH/H ₂ O (40 wt.% H ₂ O)	5.47×10^{-6}	4,220	84.5	4.48 (full cell)		
this work	commercial Ni foam	NaOH/KOH/H ₂ O (40 wt.% H ₂ O)	$5.87 imes 10^{-7}$	453	90.6	3.43 (full cell)	undivided cell	
	commercial Ni mesh	NaOH/KOH/H2O (40 wt.% H2O)	1.09×10^{-7}	84.0	84.0	2.56 (full cell)		
16	Co-NAs	1 M KOH	2.89×10^{-6}	2,230	98	-0.24	H-cell	
17	Ru-CuNW	1 M KOH	1.25×10^{-6}	965	93	-0.135	H-cell	
18	CoO _x nanosheets	0.1 M KOH	5.98×10^{-7}	462	93.4	-0.3	H-cell	
19	Bi	1 M KOH	3.88×10^{-7}	299	75	-0.8	H-cell	
20	Cu-N-C	1 M KOH	3.83×10^{-7}	296	95.5	-1	H-cell	
21	Cu-NBs-100	1 M KOH	3.61×10^{-7}	279	95.8	-0.15	H-cell	
22	Rh@Cu	0.1 M Na ₂ SO ₄ (pH 11.5)	3.53×10^{-7}	272	69	-0.4	H-cell	
23	CuPd	1 M KOH	3.47×10^{-7}	268	86.6	-0.6	H-cell	
24	Fe-cyano NSs	1 M KOH	3.44×10^{-7}	265	90.2	-0.5	H-cell	
25	Ru-ST-12	1 M KOH	3.25×10^{-7}	251	42	-0.8	H-cell	
26	CuCoSP	0.1 M KOH	3.25×10^{-7}	251	90.6	-0.175	H-cell	
27	OD-Cu	1 M KOH	3.06×10^{-7}	236	92	-0.15	H-cell	
28	CoP NAs	1 M NaOH	2.76×10^{-7}	213	86.2	-0.3	undivided cell	
29	$Cu_{10}Ce_{10}$	1 M KOH	2.75×10^{-7}	212	98.43	-0.23	H-cell	
30	NiCo ₂ O ₄ /CC	0.1 M NaOH	2.70×10^{-7}	209	95	-0.6	H-cell	
31	CoFe LDH	1 M KOH	2.58×10^{-7}	199	97.68	-0.45	H-cell	
32	island-like Cu	0.5 M Na ₂ SO ₄	1.94×10^{-7}	150	98.28	-0.8	H-cell	
33	ZnCo ₂ O ₄	0.1 M NaOH	1.76×10^{-7}	136	91.4	-0.8	H-cell	
34	TiO ₂	1 M PBS	1.74×10^{-7}	134	80.4	-1.25	H-cell	
35	Fe ₃ O ₄ /SS	0.1 M NaOH	1.66×10^{-7}	128	91.5	-0.5	H-cell	
36	Pd(111)	0.1 M Na ₂ SO ₄	1.52×10^{-7}	118	79.91	-0.7	H-cell	
37	CoO@NCNT/GP	0.1 M NaOH	1.48×10^{-7}	114	93.8	-0.6	H-cell	
38	pCuO-5	0.05 M H ₂ SO ₄	1.44×10^{-7}	111	68.6	2.2 (full cell)	flow cell	
39	Fe ₃ C/NC	1 M KOH	1.32×10^{-7}	102	79	-0.5	H-cell	
40	BCN@Cu	0.1 M KOH	1.28×10^{-7}	98.8	88.9	-0.6	H-cell	
41	Fe SAC	0.1 M K ₂ SO ₄	1.28×10^{-7}	98.6	66.2	-0.85	H-cell	
42	Cu ₅₀ Ni ₅₀ /Cu foam	1 M KOH	1.11×10^{-7}	85.5	95	-0.1	flow cell	

Table S1. Summary of state-of-the-art reported performances of NO3RR for electrochemical NH₃ production (sorted by the geometric area-normalized NH₃ production rate).

Entry	Added NO ₃ ⁻ (mmol)	Water content (%)	Т (°С)	Cathode	Anode	Electrode area (cm ²)	j (mA cm ⁻²)	Electrolysis time (h)	Average V _{cell} (V)	NH ₃ production (mmol)	NO3 ⁻ after rxn (mmol)	FE to NO ₂ ⁻ (%)	FE to NH ₃ (%)	X (NO ₃ ⁻) (%)	N balance (%)
1	9.33	40	80	Ni mesh	Ni mesh	10	100	2	2.56	7.832	0.514	2.33	84.0	94.5	98.7
2	23.32	40	80	Ni mesh	Ni mesh	10	250	2	3.53	21.49	1.052	1.90	92.2	95.5	104.3
3	46.64	40	80	Ni mesh	Ni mesh	10	500	2	3.93	41.08	1.611	2.03	88.1	96.5	99.6
4	139.92	40	80	Ni mesh	Ni mesh	10	500	6	4.01	139.21	1.720	0.35	99.5	95.3	101.0
5	23.32	40	120	Ni mesh	Ni mesh	10	250	2	2.71	17.36	0.483	5.18	74.4	97.9	97.2
6	23.32	40	160	Ni mesh	Ni mesh	10	250	2	2.65	22.45	0.014	1.05	96.3	99.9	100.5
7	9.33	40	200	Ni mesh	Ni mesh	10	100	2	2.08	7.927	0.090	1.09	85.0	99.0	90.3
8	23.32	40	200	Ni mesh	Ni mesh	10	250	2	2.44	21.13	0.205	0.79	90.6	99.1	94.7
9	46.64	40	200	Ni mesh	Ni mesh	10	500	2	3.49	40.13	0.060	0.49	86.0	99.9	88.1
10	9.33	91	80	Ni mesh	Ni mesh	10	100	2	2.87	4.705	3.619	1.67	50.4	61.2	95.9
11	9.33	99	80	Ni mesh	Ni mesh	10	100	2	4.13	3.775	4.476	1.55	40.5	52.0	94.6
12	46.64	40	80	Ni mesh	Ni mesh	4	1,250	2	4.28	44.07	4.302	1.79	94.5	90.8	110.9
13	46.64	40	80	Ni mesh	Ni mesh	1	5,000	2	4.64	32.91	11.74	1.39	70.6	74.8	101.3
14	46.64	40	80	Ni mesh	Ni foam	10	500	2	3.47	40.82	2.578	2.75	87.5	94.5	104.0
15	46.64	40	80	Ni foam	Ni foam	10	500	2	3.43	42.26	1.175	2.76	90.6	97.5	104.2
16	46.64	40	80	Ni foam	Ni mesh	1	5,000	2	4.42	35.41	8.520	1.78	75.9	81.7	101.3
17	46.64	40	80	Ni foam	Ni foam	1	5,000	2	4.48	40.63	8.301	1.61	87.1	82.2	111.3
18	46.64	40	80	Ni foam	Ni foam	1	5,000	2	4.63	40.85	8.485	2.17	87.6	81.8	114.4
19	46.64	40	80	Ni foam	Ni foam	1	5,000	2	4.73	36.75	8.463	2.23	78.8	81.9	105.6
20	46.64	40	80	Ni foam	graphite rod	1 (cathode); 8.9 (anode)	5,000	2	5.85	33.31	6.345	2.46	71.4	86.4	94.8
21	46.64	40	80	Cu mesh	Ni mesh	1	5,000	2	4.86	28.58	12.85	1.16	61.3	72.4	93.5
22[a]	46.64	40	80	Ni mesh	Ni mesh	10	500	2	4.05	40.47	1.741	2.22	86.8	91.1	99.4
23[a]	46.64	40	80	Ni mesh	Ni mesh	10	500	2	3.63	40.85	1.151	1.74	87.6	97.5	97.0
24	9.33	40	80	Ru foil	graphite rod	1 (cathode); 8.9 (anode)	1,000	2	3.47	3.218	5.700	0.19	34.5	38.9	99.4
25	9.33	40	80	Cu foil	graphite rod	1 (cathode); 8.9 (anode)	1,000	2	3.83	2.920	5.939	0.12	31.3	36.3	97.4
26	9.33	40	80	Co foil	graphite rod	1 (cathode); 8.9 (anode)	1,000	2	3.35	3.610	5.613	0.13	38.7	39.8	101.4
27	9.33	40	80	Ni foil	graphite rod	1 (cathode); 8.9 (anode)	1,000	2	3.43	3.066	5.968	0.12	32.9	36.0	99.2

Table S2. Summary of the results of constant-current NO3RR tests in the NaOH/KOH/H₂O electrolyte in this work.

[a] For Entry 22 and 23, air and O₂ were used as the carrier gas, respectively. Air was pre-scrubbed in 0.1 M KOH before entering the MFAEL.

NH₃ production NH₃-N recovery Electrolysis N content Added N Entry Added sample Abbreviation Structure (wt.%) (mmol) (mmol) (%) time (h) 0.207 0.230 $(NH_4)_2SO_4$ 21.2 111.3 1 1 2 KNO3 13.8 0.201 0.200 99.3 2 3 KNO_2 0^{---N} 16.5 0.222 0.227 102.1 2.5 Ö 0.204 0.207 101.3 5 4 Urea 46.6 _ H_2N NH₂ H₂N 5 18.6 0.205 0.193 94.2 Glycine Gly 3.5 όн H₂N 6 Lysine 19.2 0.204 0.203 99.4 8.5 Lys `ОН H_2N 7 Arginine 32.1 0.201 0.190 94.3 8 Arg NH2 8 Proline Pro 12.2 0.216 0.236 109.1 3 ЪН Ethylenediaminetetraacet 9 EDTA 9.58 0.201 0.0100 4.99 2[a] ic acid 10 Trimethylglycine TMG 12.0 0.198 0.00436 2.20 2[a] Histidine 11 His 27.1 0.207 0.224 108.1 4 он ≪ Ì HN-NH₂ 12 Tryptophan Trp 13.7 0.188 0.180 95.7 7 ЮΗ NH₂ нŅ $\dot{N}H_2$ 13 Adenine Ade 51.8 0.203 0.190 93.6 6.5 14 Algae powder 11.5 0.202 0.218 108.0 6.5 _ 15 Protein powder 8.90 0.197 0.193 98.0 7

Table S3. Summary of the screening test results in the NaOH/KOH/H₂O electrolyte in this work. All tests were conducted at 25 mA cm⁻² at 200 °C, and NH₃ was collected every 30 min until no significant increase in its production was detected.

[a] For Entries 9 (EDTA) and 10 (TMG), the electrolysis was terminated at 2 h, because of the very low NH₃ production rate.

5. Supplementary References

- 1. Y. Chen, H. Liu, N. Ha, S. Licht, S. Gu and W. Li, *Nat. Catal.*, 2020, **3**, 1055–1061.
- 2. D. M. Morales and M. Risch, J. Phys. Energy, 2021, **3**, 034013.
- 3. A. G. Hyder, B. A. Morales, M. A. Cappelle, S. J. Percival, L. J. Small, E. D. Spoerke, S. B. Rempe and W. S. Walker, *Membranes*, 2021, **11**, 217.
- 4. S.-S. Chou, J.-C. Chung and D.-F. Hwang, J. Food Drug Anal., 2003, 11, 233–238.
- 5. J. M. Baker and T. J. Griffis, J. Environ. Qual., 2017, 46, 1528–1534.
- 6. A. Rushing, J. Kneifel and B. Lippiatt, *Energy Price Indices and Discount Factors* for Life-Cycle Cost Analysis - 2013, NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, MD, 2013.
- 7. N. W. Rosenberg and C. E. Tirrell, *Industrial & Engineering Chemistry*, 1957, **49**, 780–784.
- 8. D. A. Vermaas, E. Guler, M. Saakes and K. Nijmeijer, *Energy Procedia*, 2012, **20**, 170–184.
- 9. S. Pawlowski, J. G. Crespo and S. Velizarov, J. Membr. Sci., 2014, 462, 96–111.
- 10. K. M. Chehayeb and J. H. Lienhard, *Environ. Sci. Water Res. Technol.*, 2019, 5, 1172–1182.
- 11. Z. Berk, in *Food Process Engineering and Technology (Third Edition)*, ed. Z. Berk, Academic Press, 2018, pp. 193–217.
- 12. F. Cotana, F. Asdrubali and L. Santarpia, in *International Conference "CFC The Day After"*, Padova, 1994.
- 13. B. D. James and D. A. DeSantis, *Manufacturing Cost and Installed Price Analysis* of Stationary Fuel Cell Systems, 2015.
- 14. W. M. Haynes, *CRC Handbook of Chemistry and Physics*, CRC Press, 2016.
- 15. D. S. Hall, D. J. Lockwood, C. Bock and B. R. MacDougall, *Proc. Math. Phys. Eng. Sci.*, 2015, **471**, 20140792.
- X. Deng, Y. Yang, L. Wang, X.-Z. Fu, J.-L. Luo, X. Deng, L. Wang, -Z X Fu, J.-L. Luo and Y. Yang, *Adv. Sci.*, 2021, 8, 2004523.
- F.-Y. Chen, Z.-Y. Wu, S. Gupta, D. J. Rivera, S. v. Lambeets, S. Pecaut, J. Y. T. Kim, P. Zhu, Y. Z. Finfrock, D. M. Meira, G. King, G. Gao, W. Xu, D. A. Cullen, H. Zhou, Y. Han, D. E. Perea, C. L. Muhich and H. Wang, *Nat. Nanotechnol.*, 2022, 17, 759–767.
- 18. J. Wang, C. Cai, Y. Wang, X. Yang, D. Wu, Y. Zhu, M. Li, M. Gu and M. Shao, *ACS Catal.*, 2021, **11**, 15135–15140.
- 19. N. Zhang, J. Shang, X. Deng, L. Cai, R. Long, Y. Xiong and Y. Chai, *ACS Nano*, 2022, **16**, 4795–4804.
- 20. M. Xu, Q. Xie, D. Duan, Y. Zhang, Y. Zhou, H. Zhou, X. Li, Y. Wang, P. Gao and W. Ye, *ChemSusChem*, 2022, **15**, e202200231.
- Q. Hu, Y. Qin, X. Wang, Z. Wang, X. Huang, H. Zheng, K. Gao, H. Yang, P. Zhang, M. Shao and C. He, *Energy Environ. Sci.*, 2021, 14, 4989–4997.
- 22. H. Liu, X. Lang, C. Zhu, J. Timoshenko, M. Rüscher, L. Bai, N. Guijarro, H. Yin, Y. Peng, J. Li, Z. Liu, W. Wang, B. R. Cuenya and J. Luo, *Angew. Chem. Int. Ed.*, 2022, **61**, e202202556.
- 23. Q. Gao, H. S. Pillai, Y. Huang, S. Liu, Q. Mu, X. Han, Z. Yan, H. Zhou, Q. He, H. Xin and H. Zhu, *Nat. Commun.*, 2022, **13**, 2338.

- 24. Z. Fang, Z. Jin, S. Tang, P. Li, P. Wu and G. Yu, ACS Nano, 2022, 16, 1072–1081.
- 25. J. Li, G. Zhan, J. Yang, F. Quan, C. Mao, Y. Liu, B. Wang, F. Lei, L. Li, A. W. M. Chan, L. Xu, Y. Shi, Y. Du, W. Hao, P. K. Wong, J. Wang, S. X. Dou, L. Zhang and J. C. Yu, *J. Am. Chem. Soc.*, 2020, **142**, 7036–7046.
- W. He, J. Zhang, S. Dieckhöfer, S. Varhade, A. C. Brix, A. Lielpetere, S. Seisel, J. R. C. Junqueira and W. Schuhmann, *Nat. Commun.*, 2022, 13, 1129.
- 27. J. Yuan, Z. Xing, Y. Tang and C. Liu, ACS Appl. Mater. Interfaces, 2021, 13, 52469–52478.
- 28. S. Ye, Z. Chen, G. Zhang, W. Chen, C. Peng, X. Yang, L. Zheng, Y. Li, X. Ren, H. Cao, D. Xue, J. Qiu, Q. Zhang and J. Liu, *Energy Environ. Sci.*, 2022, **15**, 760–770.
- 29. L. Yang, J. Li, F. Du, J. Gao, H. Liu, S. Huang, H. Zhang, C. Li and C. Guo, *Electrochim. Acta*, 2022, **411**, 140095.
- Q. Liu, L. Xie, J. Liang, Y. Ren, Y. Wang, L. Zhang, L. Yue, T. Li, Y. Luo, N. Li, B. Tang, Y. Liu, S. Gao, A. A. Alshehri, I. Shakir, P. O. Agboola, Q. Kong, Q. Wang, D. Ma and X. Sun, *Small*, 2022, 18, 2106961.
- 31. F. Du, J. Li, C. Wang, J. Yao, Z. Tan, Z. Yao, C. Li and C. Guo, *Chem. Eng. J.*, 2022, **434**, 134641.
- 32. C. Wang, F. Ye, J. Shen, K.-H. Xue, Y. Zhu and C. Li, *ACS Appl. Mater. Interfaces*, 2022, **14**, 6680–6688.
- Z. Li, J. Liang, Q. Liu, L. Xie, L. Zhang, Y. Ren, L. Yue, N. Li, B. Tang, A. A. Alshehri, M. S. Hamdy, Y. Luo, Q. Kong and X. Sun, *Mater. Today Phys.*, 2022, 23, 100619.
- Y.-T. Xu, Z. Peng, Y. Han, H. Zhong, J. Yang and Y. Cao, *ChemSusChem*, 2022, 15, e202102450.
- 35. X. Fan, L. Xie, J. Liang, Y. Ren, L. Zhang, L. Yue, T. Li, Y. Luo, N. Li, B. Tang, Y. Liu, S. Gao, A. A. Alshehri, Q. Liu, Q. Kong and X. Sun, *Nano Res.*, 2022, 15, 3050–3055.
- 36. Y. Han, X. Zhang, W. Cai, H. Zhao, Y. Zhang, Y. Sun, Z. Hu, S. Li, J. Lai and L. Wang, *J. Colloid Interface Sci.*, 2021, **600**, 620–628.
- Q. Chen, J. Liang, L. Yue, Y. Luo, Q. Liu, N. Li, A. A. Alshehri, T. Li, H. Guo and X. Sun, *Chem. Commun.*, 2022, 58, 5901–5904.
- R. Daiyan, T. Tran-Phu, P. Kumar, K. Iputera, Z. Tong, J. Leverett, M. H. A. Khan, A. Asghar Esmailpour, A. Jalili, M. Lim, A. Tricoli, R. S. Liu, X. Lu, E. Lovell and R. Amal, *Energy Environ. Sci.*, 2021, 14, 3588–3598.
- 39. Y. Wang, L. Zhang, Y. Niu, D. Fang, J. Wang, Q. Su and C. Wang, *Green Chem.*, 2021, **23**, 7594–7608.
- 40. X. Zhao, G. Hu, F. Tan, S. Zhang, X. Wang, X. Hu, A. v Kuklin, G. v Baryshnikov, H. Ågren, X. Zhou and H. Zhang, *J. Mater. Chem. A*, 2021, **9**, 23675–23686.
- Z.-Y. Wu, M. Karamad, X. Yong, Q. Huang, D. A. Cullen, P. Zhu, C. Xia, Q. Xiao, M. Shakouri, F.-Y. Chen, J. Y. (Timothy) Kim, Y. Xia, K. Heck, Y. Hu, M. S. Wong, Q. Li, I. Gates, S. Siahrostami and H. Wang, *Nat. Commun.*, 2021, 12, 2870.
- 42. Y. Wang, A. Xu, Z. Wang, L. Huang, J. Li, F. Li, J. Wicks, M. Luo, D.-H. Nam, C.-S. Tan, Y. Ding, J. Wu, Y. Lum, C.-T. Dinh, D. Sinton, G. Zheng and E. H. Sargent, *J. Am. Chem. Soc.*, 2020, **142**, 5702–5708.