# Supplementary Information

# CeO<sub>2</sub> supported high-valence Fe oxide for highly active and stable water oxidation

<sup>1</sup>Guangdong Provincial Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, China

<sup>2</sup>Shenzhen International Graduate School, Tsinghua University, Shenzhen, China

<sup>3</sup>College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China

<sup>4</sup>Institute of Engineering Innovation, The University of Tokyo, Tokyo, Japan

<sup>5</sup>Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China

<sup>6</sup>Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, USA

<sup>7</sup>School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

<sup>8</sup>Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518107, China

<sup>9</sup>These authors contributed equally: Hongzhi Liu, Jun Yu, Jinghuang Lin

\*e-mail: yu.jun@pku.edu.cn; bhuang@polyu.edu.hk; chsyang@pku.edu.cn

### **Experiment methods**

#### Materials

All the chemicals used in the experiments were analytical grade (AR) without additional purification. Cerium nitrate hexahydrate (Ce(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O, 99.5%, Aladdin), Iron nitrate nonahydrate (Fe(NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O, 99%, Sinopharm). Ethanol (CH<sub>3</sub>CH<sub>2</sub>OH, 95%, Aladdin).

#### **Cleaning of nickel foam**

The purchased commercial nickel foam was sonically washed for ten minutes by sequential industrial alcohol, ultrapure water, dilute hydrochloric acid (37% concentrated hydrochloric acid and ultrapure water are mixed evenly in a ratio of one to ten), ultrapure water, and industrial alcohol.

## Synthesis of CeO<sub>2</sub>@NF, Fe<sup>HV</sup>/CeO<sub>2</sub>@NF, LFe/CeO<sub>2</sub>@NF and Fe@NF

For CeO<sub>2</sub>@NF catalyst, a cerium precursor solution (0.25 Mmol Ce<sup>3+</sup> and 10 Mmol NaCl) was prepared by dissolving Ce(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O (99.99%, Aldrich) and NaCl in deionized water (about 50 mL) and was heated to 70°C by the water bath. In the three-electrode system, NF of the working electrode (WE) in 70°C electroplating solution was applied with -0.25 mA/cm<sup>2</sup> current density for 10 min to form homogeneous CeO<sub>2</sub> plating on the surface of NF. In this way, CeO<sub>2</sub>@NF catalyst was prepared.

For Fe<sup>HV</sup>/CeO<sub>2</sub>@NF catalyst, immerse CeO<sub>2</sub>@NF precursor in ferric nitrate solution (50 mL, 0.5 M) for 90 min and then dry in the air (70°C) for a few minutes to obtain Fe<sup>HV</sup>/CeO<sub>2</sub>@NF catalyst. The detailed formation mechanism of FeO<sub>x</sub> nanoparticles in Fe<sup>HV</sup>/CeO<sub>2</sub>@NF is as follows. Fe<sup>3+</sup> was hydrolyzed and formed iron hydroxide, and the corresponding H<sup>+</sup> etched CeO<sub>2</sub> with the formation of defects. The defects can anchor the iron hydroxide nanoparticles. During the following annealing process in air, the iron hydroxide nanoparticles transformed into FeO<sub>x</sub> nanoparticles.

For LFe/CeO<sub>2</sub>@NF catalyst, immerse CeO<sub>2</sub>@NF catalyst in ferric nitrate solution (50 mL, 0.6 M) for 90 min and then dry in the air (70°C) for a few minutes to obtain Lfe/CeO<sub>2</sub>@NF catalyst.

For Fe@NF catalyst, directly immerse cleaned NF in ferric nitrate solution (50 mL, 0.5 M) for 90 min and then dry in the air (70°C) for a few minutes to obtain Fe@NF catalyst.

#### Characterization

Scanning electron microscopy (SEM) measurements were performed on the field emission SEM (ZEISS SUPRA® 55). X-ray photoelectron spectroscopy (XPS) studies were conducted on ESCALAB 250Xi (Thermo Fisher). The spectra were analyzed using XPSPEAK software and bound energy calibration was performed using C1s peaks of exotic hydrocarbons at 284.8 eV. Transmission electron microscopy (TEM), high resolution TEM (HR-TEM) and scanning (S)TEM-EDS images were measured with a JEOL JEM-3200FS. HAADF STEM images were characterized by STEM (JEM-ARM200 cold, JEOL Co. Ltd) operated at 200 keV. The HAADF STEM images were obtained with a detection angle of 90-200 mrad. STEM-EELS were recorded using an Enfinium spectrometer (Gatan Inc.) with an energy dispersion of 0.25 eV/channel. The samples were prepared by sonication the catalysts off from the nickel foam, then the suspensions with catalyst were dropped onto the copper grid. The element content of the sample was measured using an inductively coupled plasma emission spectrometer (ICP-AES, Arcos II MV). The XAFS data were collected on the Beamline 20-BM facility of the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). Energies were selected using a double-crystal Si (111) monochromator while the detection I<sub>0</sub> and I<sub>T</sub> used standard ionization chambers. To calibrate the energy, a reference Fe metal foil was used, which was measured in line with the samples. All XAFS measurements were carried out at room temperature in transmission mode with continuous scanning between 6915 and 7800 eV and a commercial Fe<sub>2</sub>O<sub>3</sub> was also measured as a reference to estimate the valence state of Fe. The <sup>57</sup>Fe Mössbauer spectrum was recorded on an SEE Co W304 Mössbauer spectrometer, using a <sup>57</sup>Co/Rh source in transmission geometry. The data were fitted by using the MossWinn 4.0 software. The Fe-L soft X-ray absorption spectrua were performed at the Beamlines MCD-A and MCD-B (Soochow Beamline for Energy Materials) in NSRL, which were measured in the total electron yield mode in a vacuum chamber ( $< 5 \times 10-8$  Pa).

#### **Electrochemical Measurements**

A standard three-electrode system with 1 M KOH (pH=13.6) was used in the electrochemical tests by the CHI760E electrochemistry workstation, with a Hg/HgO

electrode and a Pt wire as the reference and counter electrodes, respectively. The scan rates were 10 mV/s for the linear sweep voltammetry tests. The measure frequency for EIS was 10<sup>-1</sup> to 10<sup>5</sup> Hz. The 0.53 V vs Hg/HgO was applied in the Tafel slope test. The working electrodes were CeO<sub>2</sub>@NF, Fe<sup>HV</sup>/CeO<sub>2</sub>@NF, LFe/CeO<sub>2</sub>@NF and Fe@NF catalysts. The potentials were calibrated against the RHE according to the following equation:  $E_{RHE} = E_{Hg/HgO} + 0.059 \text{ pH} + E^{0}_{Hg/HgO}$  ( $E^{0}_{Hg/HgO} = 0.098V$ , pH=13.6). In addition, the Ag/AgCl reference electrodes were used to prepare cerium dioxide precursor. The O<sub>2</sub> products were quantitatively analyzed by gas chromatography (GC, SHIMADZU GC-2014). The reactor was connected with an online GC with a mass flowmeter at the outlet line. This flowmeter could precisely measure the rate of the gas flow from the reactor into the GC. The reading rate was used to calculate the faradaic efficiencies of O<sub>2</sub> products. The faradaic efficiency was calculated according to the following equation.

$$FE = \frac{Qg}{Qt} = \frac{znf}{Qt} = \frac{zfP\alpha v}{106IRT}$$

where Qg and Qt are the charge transferred to  $O_2$  and the total charge across the catalysts, respectively; z is the number of electrons required for one molecule product, and z is 4 for  $O_2$ ; f is the faraday constant of 96485C/mol; P is the atmospheric pressure of 101325 Pa;  $\alpha$  (parts per million) is the  $O_2$  concentrations measured by GC;  $\nu$  (standard-state cubic centimeter per minute) is the gas flow rate displayed on the mass flowmeter between the GC and the reactor; I is the total current, R is the gas constant of 8.314 J/(mol·K); T is the room temperature of 298.15K. The Tafel plots of the overpotential vs. log (j) were recorded as described in the report (Nat Commun 2019, 10, 3899), and the linear portions at low overpotential were fitted to the Tafel equation ( $\eta = a + b \log j$ , where  $\eta$  is the overpotential, j is the cathodic current density, and b is the Tafel slope).

#### **DFT Calculation Setup**

To clarify the electronic modulations of  $Fe/CeO_2$  and its contributions to the OER performance, we have applied the DFT calculations through the CASTEP packages in this work.<sup>1</sup> For all the calculations, the generalized gradient approximation (GGA) and Perdew-Burke-Ernzerhof (PBE) are utilized to provide accurate descriptions for the

exchange-correlation interactions in the structure.<sup>2-4</sup> Meanwhile, we have selected the ultrasoft pseudopotentials for all the geometry optimizations and the plane-wave basis cutoff energy has been accordingly set to 380 eV. In particular, we choose the Broyden-Fletcher-Goldfarb-Shannon (BFGS) algorithm to efficient reach energy minimizations.<sup>5</sup> Considering the balance between calculation efficiency and accuracy, we choose the coarse quality of k-points for the geometry optimizations. Fe/CeO<sub>2</sub> has been constructed based on the (111) surfaces of the CeO<sub>2</sub> with four-layer thickness, where abundant oxygen vacancies have been created on the surface. The ultra-small  $FeO_x$  nanoparticles have been constructed based on the  $FeO_2$  structures to match the high valence states confirmed by experiments. The stringent convergence criteria have been set to guarantee accurate calculations as follows. (1) Hellmann-Feynman forces should not exceed 0.001 eV/Å; (2) the total energy difference should be less than  $5 \times 10^{-5}$ eV/atom, and (3) the inter-ionic displacement should be smaller than 0.005 Å.

# Figures



Fig. S1 SEM morphology of  $CeO_2@NF$  sample. A uniform electroplated layer, consisted of  $CeO_2$  nanoparticles, is formed on the surface of NF.



**Fig. S2 STEM-EDS mapping image of Fe<sup>HV</sup>/CeO<sub>2</sub>@NF catalyst.** The STEM-EDS mapping images prove the uniform distribution of Ce and Fe in Fe<sup>HV</sup>/CeO<sub>2</sub>@NF.



Fig. S3 AFM (atomic force microscope) image of  $FeO_x$  nanoparticles in  $Fe^{HV}/CeO_2@NF$ , showing the sizes of the  $FeO_x$  nanoparticles to be about 2 nm.



Fig. S4 HRTEM image of Fe<sup>HV</sup>/CeO<sub>2</sub>@NF.



Fig. S5 SEM image of LFe/CeO<sub>2</sub>@NF catalyst. The morphology of the  $LFe/CeO_2@NF$  catalyst presents larger iron oxide particles (~100 nm).



Fig. S6 SEM image of the Fe@NF catalyst. NF instead of  $CeO_2@NF$  as the substrate is directly etched in acidic ferric nitrate solution and forms lots of holes.



Fig. S7 XRD patterns of  $Fe^{HV}/CeO_2@NF$  and  $CeO_2@NF$ . The XRD patterns of the samples are shown in Fig. S7. Only the peaks of Ni ascribed to the nickel foam substrate are observed, and no peaks of  $FeO_x$  are detected. This is probably due to the uniform distribution (Fig. 1b) and the ultra-small size (less than 5 nm) of  $FeO_x$  nanoparticles.



Fig. S8 Polarization curves of Fe<sup>HV</sup>/CeO<sub>2</sub>@NF and reference catalysts with a scan rate of 10 mV/s.



Fig. S9 The polarization curves with Ni foam and Cu foam substrate.



Fig. S10 Cyclic voltammetry curves of (a)  $Fe^{HV}/CeO_2@NF$  (b)  $LFe/CeO_2@NF$  and (c) Fe@NF catalysts. The cyclic voltammetry (CV) was tested on  $Fe^{HV}/CeO_2@NF$ , Fe@NF and  $LFe/CeO_2@NF$  catalysts in the non-Faraday potential range (0.32-0.40 V vs Hg/HgO) and calculated the electrochemical double-layer capacitance (C<sub>dl</sub>) of the three catalysts. The ECSA was calculated according to the formula  $ECSA = C_{DL}/C_S$ , where a specific capacitance of  $C_S = 0.040 \text{ mF/cm}^2$  was used in this work.



Fig. S11 Comparison of intrinsic activity of OER electrocatalysts. This was obtained by comparing the overpotential at an ECSA normalized current density of 1 mA/cm<sup>2</sup>. The result shows that the Fe<sup>HV</sup>/CeO<sub>2</sub>@NF catalyst has the best OER specific activity among these catalysts.



Fig. S12 LSV curves of Fe<sup>HV</sup>/CeO<sub>2</sub>@NF in KOH with different pH value (left) and the OER current density at 1.48 V versus RHE plotted in log scale as a function of pH, from which the proton reaction orders ( $\rho$ RHE =  $\partial$ logi/ $\partial$ pH) were calculated (right). The OER activities of Fe<sup>HV</sup>/CeO<sub>2</sub>@NF was assessed at different pH conditions (pH = 14, 13.48, 13.15, 12.82). The result shows the OER current density at 1.48 V (vs. RHE) in log scale as a function of pH, from which the proton reaction orders on RHE scale ( $\rho$ RHE =  $\partial$ logi/ $\partial$ pH) are calculated to be 0.37. The small  $\rho$ RHE for Fe<sup>HV</sup>/CeO<sub>2</sub>@NF implies a weak pH-dependent OER activity, which indicates that the adsorption mechanism is still dominant.



**Fig. S13 Fe 2p XPS spectra of the Fe<sup>HV</sup>/CeO<sub>2</sub>@NF catalyst before and after 10-hour OER test at the current density of 30 mA/cm<sup>2</sup>.** The 2p3/2 peak still locates at about 713 eV corresponding to Fe<sup>4+</sup>, which proves the excellent stability of Fe<sup>4+</sup> in the Fe<sup>HV</sup>/CeO<sub>2</sub>@NF catalyst.



Fig. S14 The soft X-ray absorption spectroscopy of Fe L-edge of the  $Fe^{HV}/CeO_2@NF$  catalyst after 10-hour OER test at the current density of 30 mA/cm<sup>2</sup>. Compared with standard Fe<sub>2</sub>O<sub>3</sub>, the Fe L-edge in Fe<sup>HV</sup>/CeO<sub>2</sub>@NF-10h OER presents a blue shift, which suggests a higher Fe valence state than +3 in Fe<sub>2</sub>O<sub>3</sub>.



Fig. S15 Fe Mössbauer spectrum of the Fe<sup>HV</sup>/CeO<sub>2</sub>@NF catalyst after 10-hour OER test at the current density of 30 mA/cm<sup>2</sup>. The overall fitting curve as well as the curves of its components are also shown. The result revealed a doublet with an isomer shift (IS, v) of 0.23 mm/s and quadrupole splitting (QS,  $\Delta$ ) of 0.54 mm/s corresponding to Fe<sup>3+</sup>. A shoulder at v = -0.27 mm/s and a doublet at v = -0.01 mm/s corresponding to Fe<sup>4+</sup> appeared. The excellent stability of Fe<sup>4+</sup> in the Fe<sup>HV</sup>/CeO<sub>2</sub>@NF catalyst is proved.



Fig. S16 LSV curve of the Fe<sup>HV</sup>/CeO<sub>2</sub>@NF catalyst. (6 M KOH and 60°C). The polarization curve shows the current density can reach 500 mA/cm<sup>2</sup> at the overpotential of 270 mV (without *iR* compensation).



Fig. S17 The polarization curves of  $Fe^{HV}/CeO_2@NF$  measured in AEM and Integrated Electrolyzer. The OER activity of  $Fe^{HV}/CeO_2@NF$  was also performed in the lab-scale anion exchange membrane electrolyzer. After iR compensation, the OER performances of  $Fe^{HV}/CeO_2@NF$  are nearly the same in AEM and Integrated electrolyzer. This indicates the  $Fe^{HV}/CeO_2@NF$  catalyst is promising to be used for industry water splitting.



Fig. S18 Ni 2p XPS of Fe<sup>HV</sup>/CeO<sub>2</sub>@NF catalyst after 10-hour OER test at the current density of 30 mA/cm<sup>2</sup>. The typical Ni 2p peaks at 873.3 eV and 855.7 eV ascribed to Ni<sup>2+</sup> are observed obviously for Fe<sup>HV</sup>/CeO<sub>2</sub>@NF after 10-hour OER test, indicating the NiFe oxide has formed during the OER reaction (Adv. Funct. Mater. 2020, 30, 1908367).

## Tables

Table S1. The activity comparison of OER catalysts. This was obtained by comparing the overpotential to reach the geometric current density of 30, 50, and 100 mA/cm<sup>2</sup> among Fe<sup>HV</sup>/CeO<sub>2</sub>@NF catalyst and recently reported OER catalysts, indicating the indeed excellent OER activity of the Fe<sup>HV</sup>/CeO<sub>2</sub>@NF catalyst.

| Catalyst                                 | Electrolyte | Overpotential (mV)    |                       |                        | Reference |
|------------------------------------------|-------------|-----------------------|-----------------------|------------------------|-----------|
|                                          |             | 30 mA/cm <sup>2</sup> | 50 mA/cm <sup>2</sup> | 100 mA/cm <sup>2</sup> |           |
| Fe <sup>HV</sup> /CeO <sub>2</sub> @NF   | 1.0 M KOH   | 210                   | 219                   | 238                    | This work |
| NiFeCu                                   | 1.0 M KOH   | 200                   | 220                   | 260                    | 6         |
| Ni <sub>83</sub> Fe <sub>17</sub> -ONCAS | 1.0 M KOH   | 200                   | 220                   | 230                    | 7         |
| NiFe-LDH                                 | 1.0 M KOH   | 230                   | 230                   | /                      | 8         |
| ZnCoOOH                                  | 1.0 M KOH   | 250                   | 250                   | 290                    | 9         |
| FeCoCrNi                                 | 1.0 M KOH   | 230                   | 245                   | 260                    | 10        |
| CoFeAlO                                  | 1.0 M KOH   | 300                   | 310                   | 330                    | 11        |
| CeO <sub>2-x</sub> -FeNi                 | 1.0 M KOH   | 220                   | 245                   | 270                    | 12        |
| FeOOH/CeO <sub>2</sub>                   | 1.0 M NaOH  | 250                   | 270                   | 310                    | 13        |
| S-NiN                                    | 1.0 M KOH   | 300                   | 315                   | 330                    | 14        |

| Catalyst                               | C <sub>DL</sub> (mF/cm <sup>2</sup> ) | ECSA (cm <sup>2</sup> ) | Tafel slope (mV/decade) |
|----------------------------------------|---------------------------------------|-------------------------|-------------------------|
| Fe@NF                                  | 3.73                                  | 93                      | 62                      |
| Fe <sup>HV</sup> /CeO <sub>2</sub> @NF | 1.68                                  | 42                      | 40                      |
| LFe/CeO <sub>2</sub> @NF               | 8.37                                  | 209                     | 79                      |

 Table S2. Electrochemistry parameters of catalysts investigated in 1 M KOH.

Table S3. Comparison of specific activity between Fe<sup>HV</sup>/CeO<sub>2</sub>@NF catalyst and a series of recently reported high OER performance catalysts. This is acquired by comparing the overpotential at an ECSA normalized current density of 1 mA/cm<sup>2</sup>. The result shows that the Fe<sup>HV</sup>/CeO<sub>2</sub>@NF catalyst has the best OER specific activity among these catalysts.

| Catalysts                                | Electrolyte | $C_{dl}$ (mF/cm <sup>2</sup> ) | Cs ( $\mu$ F/cm <sup>2</sup> ) | η (mV) | Reference |
|------------------------------------------|-------------|--------------------------------|--------------------------------|--------|-----------|
| Fe <sup>HV</sup> /CeO <sub>2</sub> @NF   | 1.0 M KOH   | 1.68                           | 40                             | 208    | This work |
| Ni <sub>83</sub> Fe <sub>17</sub> -ONCAS | 1.0 M KOH   | 2.26                           | 40                             | 215    | 7         |
| CeO <sub>2-x</sub> -FeNi                 | 1.0 M KOH   | 0.75                           | 40                             | 220    | 12        |
| NiFe-AHNA                                | 1.0 M KOH   | 3.2                            | 40                             | 230    | 15        |
| NiFeCu                                   | 1.0 M KOH   | 54.24                          | 40                             | 280    | 6         |
| CoNiVB                                   | 1.0 M KOH   | 1.01                           | 40                             | 365    | 16        |
| W-Ni(OH) <sub>2</sub>                    | 1.0 M KOH   | 2                              | /                              | 260    | 17        |
| FeCoCrNi                                 | 1.0 M KOH   | 2.7                            | 40                             | 255    | 10        |
| F-Co <sub>2</sub> B                      | 1.0 M KOH   | 53.84                          | 40                             | 370    | 18        |
| H-NiFe-LDH                               | 1.0 M KOH   | 7.22                           | /                              | 235    | 8         |

Table S4. Stability comparison of recently reported efficient OER electrocatalysts (The electrolyte is 1 M KOH or NaOH). This table summarizes the stability comparison of recently reported efficient oxygen evolution catalysts and the Fe<sup>HV</sup>/CeO<sub>2</sub>@NF catalyst, and shows that the stability of Fe<sup>HV</sup>/CeO<sub>2</sub>@NF is outstanding among them. Degradation evaluation: the increase in overpotential or decrease in current density between the beginning and the end of the stability test.

| Catalysts                                | Current density<br>(mA/cm²) | Overpotential<br>(mV) | Time<br>(h) | Degradation            | Reference |
|------------------------------------------|-----------------------------|-----------------------|-------------|------------------------|-----------|
| FeCoCrNi                                 | 10                          | 304                   | 20          | -1 mA/cm <sup>2</sup>  | 10        |
| CeO <sub>2-x</sub> -FeNi                 | 10                          | 195                   | 48          | +20 mV                 | 12        |
| NiCeO <sub>x</sub>                       | 10                          | 300                   | 200         | -20 mV                 | 19        |
| MoO <sub>2</sub> -Ni                     | 10                          | 250                   | 480         | +30 mV                 | 20        |
| $(Co_{1-x}Ni_x)(S_{1-y}P_y)_2/G$         | 10                          | 300                   | 100         | +10 mV                 | 21        |
| UfD-RuO <sub>2</sub> /CC                 | 10                          | 210                   | 20          | +19 mV                 | 22        |
| Ag@Co-LDH                                | 10                          | 230                   | 50          | +10 mV                 | 23        |
| HCM@Ni-N                                 | 20                          | 380                   | 12          | +19 mV                 | 24        |
| ZnCoOOH                                  | 20                          | 245                   | 40          | +10 mV                 | 9         |
| NiFeB-P                                  | 50                          | 560                   | 23          | +5 mV                  | 25        |
| NiFe-PBA/Ni3C(B)                         | 100                         | 250                   | 22          | -20 mA/cm <sup>2</sup> | 26        |
| W-Ni(OH) <sub>2</sub>                    | 100                         | 260                   | 3           | /                      | 17        |
| S-NiN                                    | 100                         | 350                   | 10          | +10 mV                 | 14        |
| Fe <sup>HV</sup> /CeO <sub>2</sub> @NF   | 200                         | 296                   | 500         | +16 mV                 | This work |
| NiFe/Co <sub>3</sub> O <sub>4</sub> @NF  | 200                         | 290                   | 24          | -9 mA/cm <sup>2</sup>  | 27        |
| NiFeCu                                   | 200                         | 325                   | 6           | +10 mV                 | 6         |
| FeOOH/CeO <sub>2</sub>                   | 200                         | 400                   | 50          | -10 mA/cm <sup>2</sup> | 13        |
| Ni <sub>83</sub> Fe <sub>17</sub> -ONCAS | 200                         | 300                   | 120         | +30 mV                 | 7         |
| EP NiFeCo-CST                            | 1000                        | 260                   | 100         | +20 mV                 | 28        |

#### **Supplementary References**

- S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, M. C. Payne, *Zeitschrift Fur Kristallographie*, 2005, 220, 567-570.
- 2. Perdew, Burke, Ernzerhof, Phys. Rev. Lett., 1997, 77, 3865-3868.
- 3. P. J. Hasnip, C. J. Pickard, Comput Phys Comm., 2006174, 24-29.
- Perdew, Chevary, Vosko, Jackson, Pederson, Singh, Fiolhais, *Physical Review B*, 1992, 46, 6671-6687.
- 5. J. D. Head, M. C. Zerner, Chem Phys Lett., 1985, 122, 264-270.
- P. Zhang, L. Li, D. Nordlund, H. Chen, L. Fan, B. Zhang, X. Sheng, Q. Daniel, L. Sun, Nat. Comm., 2018, 9, 381.
- P. Liu, B. Chen, C. Liang, W. Yao, Y. Cui, S. Hu, P. Zou, H. Zhang, H. J. Fan, C. Yang, *Adv. Mater.*, 2021, **33**, 2007377.
- Z. Qiu, C. W. Tai, G. A. Niklasson, T. Edvinsson, *Energy Environ. Sci.*, 2019, 12, 572.
- Z. F. Huang, J. Song, Y. Du, S. Xi, S. Dou, J. M. V. Nsanzimana, C. Wang, Z. J. Xu, X. Wang, *Nat. Energy*, 2019, 4, 329-338.
- N. Zhang, X. Feng, D. Rao, X. Deng, L. Cai, B. Qiu, R. Long, Y. Xiong, Y. Lu, Y. Chai, *Nat. Comm.*, 2020, **11**, 4066.
- T. Wu, S. Sun, J. Song, S. Xi, Y. Du, B. Chen, W. A. Sasangka, H. Liao, C. L. Gan, G. G. Scherer, L. Zeng, H. Wang, H. Li, A. Grimaud, Z. J. Xu, *Nature Cataly.*, 2019, 2, 763-772.
- J. Yu, J. Wang, X. Long, L. Chen, Q. Cao, J. Wang, C. Qiu, J. Lim, S. Yang, Adv. Energy Mater., 2021, 11, 2002731.
- J. X. Feng, S. H. Ye, H. Xu, Y. X. Tong, G. R. Li, Adv. Mater., 2016, 28, 4698–4703.
- Y. Hou, M. Qiu, M. G. Kim, P. Liu, G. Nam, T. Zhang, X. Zhuang, B. Yang, J. Cho, M. Chen, C. Yuan, L. Lei, X. Feng, *Nat. Comm.* 2019, **10**, 1392.
- C. Liang, P. Zou, A. Nairan, Y. Zhang, J. Liu, K. Liu, S. Hu, F. Kang, H. J. Fan, C. Yang, *Energy Environ. Sci.*, 2020, 13, 86.

- H. Han, Y. R. Hong, J. Woo, S. Mhin, K. M. Kim, J. Kwon, H. Choi, Y. C. Chung, T. Song, *Adv. Energy Mater.*, 2019, 9, 1803799.
- J. Yan, L. Kong, Y. Ji, J. White, Y. Li, J. Zhang, P. An, S. Liu, S. T. Lee, T. Ma, *Nat. Comm.*, 2019, **10**, 2149.
- H. Han, H. Choi, S. Mhin, Y. R. Hong, K. M. K, J. Kwon, G. Ali, K. Y. Chung, M. Je, H. N. Umh, D. H. Lim, K. Davey, S. Z. Qiao, U. Paik, T. Song, *Energy Environ. Sci.* 2019, **12**, 2443.
- J. Yu, Q. Cao, Y. Li, X. Long, S. Yang, J. K. Clark, M. Nakabayashi, N. Shibata, J. J. Delaunay, *ACS Catal.*, 2019, 9, 1605-1611.
- X. Liu, J. Meng, K. Ni, R. Guo, F. Xia, J. Xie, X. Li, B. Wen, P. Wu, M. Li, J. Wu, X. Wu, L. Mai, D. Zhao, *Cell Reports Phy. Sci.*, 2020, 1, 100241.
- H. J. Song, H. Yoon, B. Ju, G. H. Lee, D. W. Kim, *Adv. Energy Mater.*, 2018, 8, 1802319.
- 22. R. Ge, L. Li, J. S, Y. Lin, Z. Tian, L. Chen, Adv. Energy Mater., 2019, 9, 1901313.
- M. Zhang, Y. Zhang, L. Ye, B. Guo, Y. Gong, *App. Catal. B: Environ.*, 2021, 298, 120601.
- H. Zhang, Y. Liu, T. Chen, J. Zhang, J. Zhang, X. W. D. Lou, *Adv. Mater.*, 2019, 31, 1904548.
- 25. Y. Kang, Y. Guo, J. Zhao, B. Jiang, J. Guo, Y. Tang, H. Li, V. Malgras, M. A. Amin, H. Nara, Y. Sugahara, Y. Yamauchi, T. Asahi, *Small*, 2022, **18**, 2203411.
- X. Lin, S. Cao, H. Chen, X. Chen, Z. Wang, S. Zhou, H. Xu, S.Liu, S. Wei, X. Lu, *Chem. Eng. Journal*, 2022, 433, 133524.
- J. Lv, L. Wang, R. Li, K. Zhang, D. Zhao, Y. Li, X. Li, X. Huang, G. Wang, ACS Catal., 2021, 11, 14338–14351.
- J. Mo, Y. Ko, Y. S. Yun, J. Huh, J. Cho, *Energy Environ. Sci.*, 2022, 15, 3815-3829.