Supporting Information for

Enhanced H₂ Production at Atomic Ni-Ce Interface Following Methanol Steam Reforming

Yaqi Hu,[†] Zhong Liang,[†] Yabin Zhang, Yaping Du,* and Hongbo Zhang*

School of Materials Science and Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300350, P. R. China

[†]These authors contribute equally.

*Corresponding Authors:

Yaping Du, ypdu@nankai.edu.cn

Hongbo Zhang, hbzhang@nankai.edu.cn

Table of contents

Results and discussion
S1 Characterization of the as prepared catalysts
S2 Catalytic performance in methanol steam reforming and water-gas shift reaction over NiCe/CN DAC7
S3 Quasi- <i>in-situ</i> XPS characterization11
S4 Steady-state isotopic transient kinetic analysis (SSITKA) combined with <i>in-situ</i> FTIR measurements over NiCe/CN DAC
S5 Exclusion of external and internal diffusion limitation15
S6 The involvement of WGS within the MSR15
S7 Kinetic pressure dependence study17
S8 Proposed mechanism and complete derivation of the rate expression for MSR.18
S9 Isotope tracing and kinetic isotope effects assessment
Supporting references

Results and discussion

S1 Characterization of the as prepared catalysts

Fig. S1 XRD patterns of the fresh catalysts.

Fig. S2 (i) TEM image and (ii-vi) elemental mappings of NiCe/CN DAC-fresh.

Fig. S3 Nitrogen adsorption/desorption isotherm plot and pore size distribution obtained from BET measurement of (a, b) NiCe /CN DAC, (c, d) Ni/CN SAC and (e, f) Ni/CeO₂.

Table S1. The EXAFS data fitting results of NiCe /CN DAC

Sample	Coordination	CN	R(Å)	$\sigma^2(*10^{-3}\text{\AA}^2)$	$\Delta E(eV)$	R-factor
_						
Ni foil	Ni-Ni	12	2.48(-0.04)	-	-	0.002
CeO ₂	Ce-O	8	2.32(-0.02)	5.8	-5.3	0.002
	Ce-Ce	12	3.82(-0.09)	6.2	-1.1	0.002
NiCe/CN	Ni-N(O)	5.8	2.04(-0.02)	12.8	-5.3	0.004
	Ce-N(O)	12.1	2.59(-0.09)	15.1	-2.3	0.006

CN is the coordination number; R is interatomic distance; σ^2 is Debye-Waller factor; ΔE is edge-energy shift; R-factor is used to value the goodness of the fitting.

Table S2. The Ni and Ce loadings were determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES).

Catalysts	Ni (wt %)	Ce (wt %)
Ni/CN	2.7	-
Ce/CN	-	4.9
NiCe/CN	2.2	4.9

Fig. S4 (a-c) TEM images and (d) Elemental mappings of NiCe/CN DAC-used.

Fig. S5 TG profile of NiCe/CN DAC-used.

S2 Catalytic performance in methanol steam reforming and water-gas shift reaction over NiCe/CN DAC.

Fig. S6 Mass-dependent activities of NiCe/CN DAC in (a) MSR and (b) WGS reactions. (Reaction conditions of MSR: 1 kPa CH₃OH, 16.02 kPa H₂O, Ar balanced, total flow rate =30 ml/min; reaction conditions of WGS: 2 kPa CO, 10 kPa H₂O, Ar balanced, total flow rate =80 ml/min. Blue \triangle : 20 mg, yellow \bigcirc : 50 mg, red \bigcirc : 100 mg.)

Fig. S7 Arrhenius plots with H₂ generation rate in (a) MSR and (b) WGS as a function of reversed reaction temperature over various catalysts. (Reaction conditions of MSR: 1 kPa CH₃OH, 16.02 kPa H₂O, Ar balanced, GHSV=19099 h⁻¹; Reaction conditions of WGS: 2 kPa CO, 10 kPa H₂O, Ar balanced, GHSV=10186 h⁻¹. Red ○: NiCe/CN DAC, brown ∇ : NiLa/CN DAC, sapphire \diamond : NiY/CN DAC, green \bullet : Ni/CN SAC, purple Δ : Ce/CN SAC, yellow \triangleleft : Ni/CeO₂, blue \triangleright : Pt/Al₂O₃)

 Table S3. The apparent activation energies of NiCe/CN DAC and reference samples

 in MSR and WGS.

Catalysts	Ea of MSR (kJ/mol)	Ea of WGS (kJ/mol)
NiCe/CN DAC	63.5	60.5
NiLa/CN DAC	73	65.4
NiY/CN DAC	82.4	77.1
Ni/CN SAC	76.6	79.7
Ce/CN SAC	189.4	194.2
Ni/CeO ₂	69.6	70.1
Pt/Al ₂ O ₃	75.4	67.3

Cat	tolvata	Ponction oor	Conv.	CO Selec.	TOR	Dof	
Ca	larysis	Keaction con	lations	(%)	(%)	$(\mu mol_{H2}/g_{cat.}/s)$	Kel.
2% P	t/α-MoC	n _{MeOH} : n _{H2O} =1:3 100 mg, 50 ml	463 K, 2 MPa	-	0.06	129.6	[1]
2% N	li/α-MoC	n _{MeOH} : n _{H2O} =1:1 100 mg, 50 ml	513 K, 10 h 2 MPa	-	0.7	171	[2]
7% Ni	Cu-3% /Al ₂ O ₃	$n_{MeOH}: n_{H2O} = 1:1.7$ 3 g	498 K, 101.325 kPa	94	-	-	[3]
Ni	/CeO ₂	n _{MeOH} : n _{H2O} =1:3	573 K, 101.325 kPa	68	20	-	[4]
NiA	Al-LDH	100 mg	613 K, 101.325 kPa	16.1	6.4	47	[5]
(Pd/Z).1% ZnAl ₂ O ₄	n _{MeOH} : n _{H2O} =1:1.1 300 mg	523 K, 101.325 kPa	38	3	11.4	[6]
InPe	d/In ₂ O ₃	n _{MeOH} : n _{H2O} =1:1 1g	573 K, 101.325 kPa	26	1	-	[7]
Ru	1/CeO2	n _{MeOH} : n _{H2O} =1:3 100 mg	623 K, 101.325 kPa	25.6	2.2	38.8	[8]
Cu/Zı	nO/Al ₂ O ₃	$n_{MeOH}: n_{H2O}$ =1:1.3 100 mg	498 K, 1bar	67	70	-	[9]
Ni	Ce/CN	n _{MeOH} : n _{H2O} =1:16 100 mg	513 K, 101.325 kPa	99.1	0.8	6.5	This wor k

Table S4. Catalytic performance comparison of methanol reforming at variousreaction conditions on a series of catalysts.

Fig. S8 Temperature-dependent activities and carbon product selectivities of NiCe/CN DAC. (Reaction conditions: 1 kPa CH₃OH, 16.02 kPa H₂O, Ar balanced, GHSV=318 h⁻¹)

Fig. S9 The long-term stability of NiCe/CN DAC in MSR. (Reaction conditions: 1 kPa CH₃OH, 16.02 kPa H₂O, Ar balanced, 623 K, GHSV=318 h⁻¹)

S3 Quasi-in-situ XPS characterization

Fig. S10 Ni 2p XPS spectra of the Ni/CN SAC after reduction (i: 10 % H₂/Ar, 623 K, 2 h, 50 mL/min), under MD condition for 1 h (ii: 1 kPa CH₃OH, Ar balanced, 623 K, 30 mL/min) and under MSR condition for 1 h (iii: 1 kPa CH₃OH, 16.02 kPa H₂O, Ar balanced, 623 K, 30 mL/min).

Fig. S11 (a) Ni 2p XPS spectra and (b) Ce 3d XPS spectra of the Ni/ CeO₂ after reduction (i: 10 % H_2/Ar , 623 K, 2 h, 50 mL/min), under MD condition for 1 h (ii: 1 kPa CH₃OH, Ar balanced, 623 K, 30 mL/min) and under MSR condition for 1 h (iii: 1 kPa CH₃OH, 16.02 kPa H₂O, Ar balanced, 623 K, 30 mL/min).

Catalysts		N	Ni ⁰		Ni ²⁺		Ni ³⁺	
		BE	Content	BE	Content	BE	Content	
	i	-	-	855.8	82.6%	858.8	17.4%	
Ni/CN	ii	853.0	5.8%	855.4	72.5%	858.0	21.7%	
	iii	853.7	19.9%	855.4	56.8%	857.7	23.3%	
	i	-	-	854.9	87.0%	857.2	13.0%	
NiCe/CN	ii	852.3	9.2%	854.4	70.9%	856.7	19.9%	
	iii	852.2	8.1%	854.4	74.1%	856.7	17.8%	
Ni/CeO ₂	i	853.6	23.2%	855.5	66.1%	857.2	10.7%	
	ii	852.6	10.5%	854.4	80.6%	857.2	8.9%	
	iii	852.7	10.9%	854.4	78.2%	856.8	10.9%	

Table S5. X-ray photoelectron spectroscopy analysis results of Ni $2p_{3/2}$.

i (Reduction): 10 % H₂/Ar, 623 K, 2 h, 50 mL/min

ii (MD): 1 kPa CH₃OH, Ar balanced, 623 K, 1 h, 30 mL/min

iii (MSR): 1 kPa CH₃OH, 16.02 kPa H₂O, Ar balanced, 623 K, 1 h, 30 mL/min

Table S6. X-ray photoelectron spectroscopy analysis results of Ce 3d.

Catalysts			Area ratio of peaks					Average
		$u_0 v_0$	u v	u' v'	u" v"	u''' v'''		valance
	i	0.25	1.69	1.02	0.97	1.49	23.4%	3.77
NiCe/CN	ii	0.53	1.20	1.55	0.46	0.78	45.9%	3.54
	iii	0.64	1.17	1.58	0.41	0.59	50.6%	3.49
Ni/CeO ₂	i	0.37	1.17	1.06	1.1	1.69	26.5%	3.74
	ii	0.69	1.20	1.69	0.59	1.00	46.0%	3.54
	iii	0.71	1.10	1.69	0.51	0.88	49.1%	3.51

i (Reduction): 10 % H₂/Ar, 623 K, 2 h, 50 mL/min

ii (MD): 1 kPa CH₃OH, Ar balanced, 623 K, 1 h, 30 mL/min

iii (MSR): 1 kPa CH₃OH, 16.02 kPa H₂O, Ar balanced, 623 K, 1 h, 30 mL/min

S4 Steady-state isotopic transient kinetic analysis (SSITKA) combined with *insitu* FTIR measurements over NiCe/CN DAC

Fig. S12 Schematic diagram of fitting the IR spectra collected at 50 min in Fig. 4a.

Fig. S13 IR spectra of NiCe/CN DAC recorded at 623 K during a SSITKA experiment from the initial flow made of 10 kPa D₂O in Ar to a similar unlabeled (10 kPa H₂O) gas-mixture. (Total flow rate: 50 mL/min)

Fig. S14 IR spectra of NiCe/CN DAC recorded at 623 K during a SSITKA experiment from the initial flow made of 2kPa CH₃OH and 10 kPa H₂O in Ar to a similar labeled (2kPa CD₃OD and 10 kPa H₂O) gas-mixture. (Total flow rate: 50 mL/min)

Fig. S15 IR spectra of NiCe/CN DAC recorded at 623 K during a SSITKA experiment from the initial flow made of 2kPa CH₃OH and 15 kPa H₂O in Ar to a similar labeled (2kPa CD₃OD and 15 kPa H₂O) gas-mixture. (Total flow rate: 50 mL/min)

S5 Exclusion of external and internal diffusion limitation

Fig. S16 (a) Change the gas hourly space velocity (GHSV) over 2% NiCe/CN DAC to exclude the internal diffusion resistance (Reaction conditions: 1 kPa CH₃OH, 16.02 kPa H₂O, Ar balanced, 623K); (b) Serial loading of x wt% NiCe/CN DAC (x=0.1, 0.5, 1, 2) to exclude the external diffusion resistance (Reaction conditions: 1 kPa CH₃OH, 16.02 kPa H₂O, Ar balanced, 623K, GHSV=19099 h⁻¹).

S6 The involvement of WGS within the MSR

In general, MSR consists of MD and WGS.	
$CH_3OH + H_2O \rightarrow CO_2 + 3H_2$	(S1)
$CH_3OH \rightarrow CO + 2H_2$	(82)
$CO + H_2 O \rightarrow CO_2 + H_2$	(\$3)

We set the reaction rate of MD as E1, and the reaction rate of WGS is set as E2. Then, the formation rate of H_2 and CO are respectively equal to,

$$f_{H_2} = 2E1 + E2$$
 (S4)

$$f_{CO} = E1 - E2 \tag{S5}$$

Then we define the formation ratio between H_2 and CO as $\eta\colon$

$$\eta = \frac{f_{H_2}}{f_{CO}} = \frac{2E1 + E2}{E1 - E2}$$
(S6)

And η can also be used to describe the involvement of WGS in the overall MSR. Methanol decomposes to form CO and H₂. If no WGS occurs at all, then E2 is equal to 0 and η is calculated as 2. Once WGS occurs, CO will be consumed and H₂ will generate at the same time, in this case, the value of η should be greater than 2 and increase with the increased involvement of WGS. Until all of the CO produced by MD participates in WGS, so E1 is equal to E2, then η goes to infinity. Therefore, the reaction degree of WGS and MD can be judged according to the value of η .

Then we define the reaction rate ratio of MD to WGS as ε :

$$\varepsilon = \frac{r_{MD}}{r_{WGS}} = \frac{E1}{E2} \tag{S7}$$

substitute Eq. S13 into Eq. S14,

$$\varepsilon = \frac{\eta + 1}{\eta - 2} \tag{S8}$$

If MD is dominant and WGS almost does not occur, then ε will tend to infinity. With the increased involvement of WGS, ε will gradually decrease until all CO produced by MD participates in WGS, that is, E1 is equal to E2, at which time ε has a minimum value of 1.

In general, as shown in **Fig. S16** and **Fig. S17**, with the increase of pressure of H_2O or conversion, whether from the increasing CO selectivity or the trend of increasing η and decreasing ε , it indicates that the involvement of WGS within the whole reaction process is gradually increasing.

Fig. S17 Influence of H_2O pressure on the involvement of WGS. (a) H_2O pressuredependent activities and (b) carbon product selectivities of MSR on 1% NiCe/CN DAC (Reaction conditions: 1 kPa CH₃OH, 2-30 kPa H₂O, Ar balanced, 623 K)

Fig. S18 Influence of methanol conversion on the involvement of WGS. (a) Activities as a function of conversion and (b) trend of carbon product selectivities with the conversion of MSR on 2% NiCe/CN DAC (Reaction conditions: 1 kPa CH₃OH, 16.02 kPa H₂O, Ar balanced, 423-513 K, GHSV=318 h⁻¹).

S7 Kinetic pressure dependence study

Fig. S19 (a) H₂ formation rate as functions of CO₂ pressures (\bigtriangledown : 1-50 kPa CO₂, 1 kPa CH₃OH, 16.02 kPa H₂O) and (b) CH₃OH consumption rate as a function of H₂ pressures (\diamond : 3-80 kPa H₂, 1 kPa CH₃OH, 16.02 kPa H₂O) of MSR reaction at different temperature and atmospheric pressure.

Fig. S20 H₂ formation rate as functions of CO₂ pressures (olive \diamond : 0.5-40 kPa CO₂, 2 kPa CO, 10 kPa H₂O), H₂O (red \bigcirc : 2-60 kPa H₂O, 2 kPa CO), and CO pressures (cyan ∇ : 0.2-10 kPa CO, 10 kPa H₂O) and CO₃ formation rate as a function of H₂ pressures (blue \triangle : 2-30 kPa H₂, 2 kPa CO, 10 kPa H₂O) of WGS reaction at 573 K and atmospheric pressure.

S8 Proposed mechanism and complete derivation of the rate expression for MSR.

Steps	Constant
CH ₃ OH + 2 * → CH ₃ O* + H*	K ₁
$CH_3O^* + * \longrightarrow CH_2O^* + H^*$	\mathbf{k}_2
CH ₂ O* + * → CHO* + H*	\mathbf{K}_3
CHO* + * CO* + H*	\mathbf{K}_4
CO* < ← CO+*	K ₅
$H_2O + O_V \implies H_2O_L$	\mathbf{K}_{6}
$H_2O_L + * \implies HO_L + H^*$	K ₇
$HO_L + * \longrightarrow O_L + H^*$	k ₈
$CO* + O_L \implies COO_L + *$	K ₉
$COO_L \iff CO_2 + O_V$	K ₁₀
$2 \text{ H}^* \implies \text{H}_2 + 2 *$	K ₁₁

Scheme S1. Proposed mechanism of MSR on 1% NiCe/CN DAC.

S8.1. Complete derivation of the rate expression for MD.

S8.1.1 CH₃OH dehydrogenation as the KRS.

If CH_3OH dehydrogenation to form CH_3O^* is assumed to be KRS, the reaction rate would be expressed as:

$$\frac{r}{[L]} = \frac{k_1 [CH_3 OH] [*]^2}{[L_{Ni}] [L_{Ce}]}$$
(S9)

After considering about the quasi-equilibrated (QE) assumption on CH₃OH adsorption, CO and CO₂ desorption, H_2O activation, H_2 and O_LH formation:

$$[CH_3O*] = \frac{K_1[CH_3OH][*]^2}{[H*]}$$
(S10)

$$[CO*] = \frac{[CO][*]}{K_5}$$
(S11)

$$[COO_L] = \frac{[CO_2][O_V]}{K_{10}}$$
(S12)

$$[H_2 O_L] = K_6 [H_2 O] [O_V]$$
(S13)

$$[H*] = \frac{[H_2]^{\frac{1}{2}}[*]}{K_{11}^{\frac{1}{2}}}$$

$$K_7[H_2O_1][*]$$
(S14)

$$[HO_L] = \frac{m_{7L}m_{2}O_{L}1[*]}{[H*]}$$
(S15)

substitute Eq. S14 into Eq. S10,

1

$$[CH_{3}O*] = \frac{K_{1}K_{11}^{\frac{1}{2}}[CH_{3}OH][*]}{[H_{2}]^{\frac{1}{2}}}$$
(S16)

and substitute Eq. S13, Eq. S14 into Eq. S15,

$$[HO_L] = \frac{K_6 K_7 K_{11}^{\frac{1}{2}} [H_2 O][O_V]}{[H_2]^{\frac{1}{2}}}$$
(S17)

The expression of surface intermediates would be simplified as: $[L] = ([*] + [H*] + [CO*] + [CH_3O*]) \cdot ([O_v] + [COO_L] + [HO_L])$

$$= [*][0_{v}](1 + \frac{[H_{2}]^{\frac{1}{2}}}{K_{11}^{\frac{1}{2}}} + \frac{[CO]}{K_{5}} + \frac{K_{1}K_{11}^{\frac{1}{2}}[CH_{3}OH]}{[H_{2}]^{\frac{1}{2}}})(1 + \frac{[CO_{2}]}{K_{10}} + \frac{K_{6}K_{7}K_{11}^{\frac{1}{2}}[H_{2}O]}{[H_{2}]^{\frac{1}{2}}})$$
(S18)

The reaction rate could be finally expressed as:

$$\frac{r}{[L]} = \frac{k_1[CH_3OH]}{(1 + \frac{[H_2]^{\frac{1}{2}}}{K_{11}^{\frac{1}{2}}} + \frac{[CO]}{K_5} + \frac{K_1K_{11}^{\frac{1}{2}}[CH_3OH]}{[H_2]^{\frac{1}{2}}})(1 + \frac{[CO_2]}{K_{10}} + \frac{K_6K_7K_{11}^{\frac{1}{2}}[H_2O]}{[H_2]^{\frac{1}{2}}})$$

(S19)

S8.1.2. CH₃O* dehydrogenation as the KRS.

If CH_3O^* dehydrogenation to form CH_2O^* is assumed to be KRS, the reaction rate would be expressed as:

$$\frac{r}{[L]} = \frac{k_2 [CH_3O*][*]}{[L_{Ni}][L_{Ce}]}$$

(S20)

The expression of surface intermediates would be same as above, so the reaction rate could be finally expressed as:

$$\frac{r}{[L]} = \frac{k_2 K_1 K_{11}^{\frac{1}{2}} [CH_3 OH]}{[H_2]^{\frac{1}{2}} (1 + \frac{[H_2]^{\frac{1}{2}}}{K_{11}^{\frac{1}{2}}} + \frac{[CO]}{K_5} + \frac{K_1 K_{11}^{\frac{1}{2}} [CH_3 OH]}{[H_2]^{\frac{1}{2}}})(1 + \frac{[CO_2]}{K_{10}} + \frac{K_6 K_7 K_{11}^{\frac{1}{2}} [H_2 O]}{[H_2]^{\frac{1}{2}}})$$

(S21)

S8.1.3. CH₂O* dehydrogenation as the KRS.

If CH_2O^* dehydrogenation to form CHO* is assumed to be KRS, the reaction rate would be expressed as:

$$\frac{r}{[L]} = \frac{k_3 [CH_2 O *][*]}{[L_{Ni}] [L_{Ce}]}$$

(S22)

After considering about the quasi-equilibrated (QE) assumption on CH_3O^* dehydrogenation to form CH_2O^* :

$$[CH_2O*] = \frac{K_2[CH_3O*][*]}{[H*]} = \frac{K_1K_2K_{11}[CH_3OH][*]}{[H_2]}$$
(S23)

The expression of surface intermediates would be same as above, so the reaction rate could be finally expressed as:

$$\frac{r}{[L]} = \frac{k_3 K_1 K_2 K_{11} [CH_3 OH]}{[H_2] (1 + \frac{[H_2]^{\frac{1}{2}}}{K_{11}^{\frac{1}{2}}} + \frac{[CO]}{K_5} + \frac{K_1 K_{11}^{\frac{1}{2}} [CH_3 OH]}{[H_2]^{\frac{1}{2}}})(1 + \frac{[CO_2]}{K_{10}} + \frac{K_6 K_7 K_{11}^{\frac{1}{2}} [H_2 O]}{[H_2]^{\frac{1}{2}}})$$

(S24)

S8.1.4. CHO*_I dehydrogenation as the KRS.

If CHO* dehydrogenation to form CO* is assumed to be KRS, the reaction rate would be expressed as:

$$\frac{r}{[L]} = \frac{k_4 [CHO *][*]}{[L_{Ni}][L_{Ce}]}$$
(S25)

After considering about the quasi-equilibrated (QE) assumption on CH_2O^* dehydrogenation to form CHO*:

$$[CHO*] = \frac{K_3[CH_2O*][*]}{[H*]} = \frac{K_1K_2K_3K_{11}^{\frac{3}{2}}[CH_3OH][*]}{[H_2]^{\frac{3}{2}}}$$

(S26)

The expression of surface intermediates would be same as above, so the reaction rate could be finally expressed as:

$$\frac{r}{[L]} = \frac{k_4 K_1 K_2 K_3 K_{11}^{\frac{3}{2}} [CH_3 OH]}{[H_2]^{\frac{3}{2}} (1 + \frac{[H_2]^{\frac{1}{2}}}{K_{11}^{\frac{1}{2}}} + \frac{[CO]}{K_5} + \frac{K_1 K_{11}^{\frac{1}{2}} [CH_3 OH]}{[H_2]^{\frac{1}{2}}})(1 + \frac{[CO_2]}{K_{10}} + \frac{K_6 K_7 K_{11}^{\frac{1}{2}} [H_2 O]}{[H_2]^{\frac{1}{2}}})$$

(S27)

The desorption of CO adsorbed may not be kinetically relevant step, due to the absence of KIE of H-D exchange.

S8.2. Complete derivation of the rate expression for WGS.

S8.2.1 Dissociatively adsorption of H₂O as the KRS.

If H₂O_L dehydrogenation to form HO_L is assumed to be KRS, the reaction rate would be expressed as:

$$\frac{r}{[L]} = \frac{k_7 [H_2 O_L][*]}{[L_{Ni}] [L_{Ce}]}$$
(S28)

The expression of surface intermediates would be same as above, so the reaction rate could be finally expressed as:

$$\frac{r}{[L]} = \frac{k_7 K_6 [H_2 0]}{\left(1 + \frac{[H_2]^2}{K_{11}^{\frac{1}{2}}} + \frac{[C0]}{K_5} + \frac{K_1 K_{11}^{\frac{1}{2}} [CH_3 0H]}{[H_2]^{\frac{1}{2}}}\right)\left(1 + \frac{[C0_2]}{K_{10}} + \frac{K_6 K_7 K_{11}^{\frac{1}{2}} [H_2 0]}{[H_2]^{\frac{1}{2}}}\right)$$

(S29)

S8.2.2. Rupture of O_L-H bond as the KRS.

If rupture of O_LH to form O_L is assumed to be KRS, the reaction rate would be expressed as:

$$\frac{r}{[L]} = \frac{k_8 [HO_L][*]}{[L_{Ni}][L_{Ce}]}$$

(S30)

The expression of surface intermediates would be same as above, so the reaction rate could be finally expressed as:

$$\frac{r}{[L]} = \frac{k_8 K_6 K_7 K_{11}^{\frac{1}{2}} [H_2 0]}{[H_2]^{\frac{1}{2}} (1 + \frac{[H_2]^{\frac{1}{2}}}{K_{11}^{\frac{1}{2}}} + \frac{[C0]}{K_5} + \frac{K_1 K_{11}^{\frac{1}{2}} [CH_3 0H]}{[H_2]^{\frac{1}{2}}})(1 + \frac{[C0_2]}{K_{10}} + \frac{K_6 K_7 K_{11}^{\frac{1}{2}} [H_2 0]}{[H_2]^{\frac{1}{2}}})$$
(S31)

According to $r_{H_2} = r_{MD} + r_{WGS}$, add the hypothetical expressions of the H₂ formation rate in MD and WGS corresponding to different KRS, and by assuming different species as MASIs, only the expression about considering the rupture of C-H bond in CH₃O* and the rupture of O_L-H bond in hydroxyl group to be KRS (Eq. 3) matches the trends observed in previous pressure study (Fig. 5). The expression 21

shows first or zeroth order dependence of CH_3OH pressures, first order or zeroth order dependence of H_2O pressures, zeroth order or negative first order dependence of CO pressures, zeroth order or negative first order dependence of CO_2 pressures, zeroth order or negative first order dependence of H_2 pressures, zeroth order or negative first order dependence of H_2 pressures.

The formation and desorption of CO₂ species may not be kinetically relevant steps, due to the absence of KIE of H-D exchange.

S9 Isotope tracing and kinetic isotope effects assessment.

Fig. S21 H_2 formation rates for MD at 623 K (1 kPa isotopes of CH₃OH, Ar balanced, GHSV=19099 h⁻¹) as a function of time.

Fig. S22 H_2 formation rates for WGS at 623 K (10 kPa isotopes of H_2O , 2 kPa CO, Ar balanced, GHSV=19099 h⁻¹) as a function of time.

Fig. S23 H_2 formation rates for MSR at 623 K (1 kPa isotopes of CH_3OH , 2 kPa isotopes of H_2O , Ar balanced, GHSV=19099 h⁻¹) as a function of time.

Supporting references

[1] L. Lin, W. Zhou, R. Gao, S. Yao, X. Zhang, W. Xu, S. Zheng, Z. Jiang, Q. Yu, Y.
W. Li and C. Shi, *Nature*, 2017, 544, 80–83.

[2] L. Lin, Q. Yu, M. Peng, A. Li, S. Yao, S. Tian, X. Liu, A. Li, Z. Jiang, R. Gao, X.
D. Han, Y. W. Li, X. D. Wen, W. Zhou and D. Ma, *J. Am. Chem. Soc.*, 2021, 143, 309–317.

[3] M. Khzouza, E. I. Gkanasa, S. F. Du and J. Wood, Fuel, 2018, 232, 672-683.

[4] Z. Y. Liu, S. Y. Yao, A. J. Peck, W. Q. Xu, J. A. Rodrigueza and S. D. Senanayake, *Catal. Today*, 2018, **311**, 74-80.

[5] C. X. Qi, J. C. Amphlett and B. A. Peppley, Catal. Lett., 2005, 104, 57-62.

[6] L. Liu, Y. J. Lin, Y. R. Hu, Z. N. Lin, S. Y. Lin, M. Q. Du, L. N. Zhang, X. H. Zhang, J. D. Lin, Z. X. Zhang, H. F. Xiong, S. Wang, B. H. Ge, S. L. Wan and Y. Wang, ACS Catal., 2022, 12, 2714–2721.

[7] N. Köwitsch, L. Thoni, B. Klemmed, A. Benad, P. Paciok, M. Heggen, I. Köwitsch, M. Mehring, A. Eychmüller and M. Armbrüster, *ACS Catal.*, 2021, **11**, 304–312.

[8] L. Chen, Z. Y. Qi, X. X. Peng, J. L. Chen, C. W. Pao, X. B. Zhang, C. C. Dun, M. Young, D. Prendergast, J. J. Urban, J. H. Guo, G. A. Somorjai and J. Su, *J. Am. Chem. Soc.*, 2021, **143**, 12074–12081.

[9] D. D. Li, F. Xu, X. Tang, S. Dai, T. C. Pu, X. L. Liu, P. F. Tian, F. Z. Xuan, Z. Xu,
I. E. Wachs and M. H. Zhu, *Nat. Catal.*, 2022, 5, 99-108.