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S1 Simulation details

S1.1 Simulations of aqueous electrolytes in realistic mica slabs

All simulations are performed using the GROMACS simulation package1,2 version 2021 with a time step of ∆t = 2fs.
Centre-of-mass motion removal is performed by removing the translational velocity of the system every 100 time steps.
A cut-off for the calculation of the Lennard-Jones interaction at rvdW = 1.2nm is used, while the potential is shifted such
that it is zero at the cut-off. Electrostatic forces are calculated via the smooth Particle-Mesh Ewald method with cubic
interpolation. The relative strength of the shifted direct potential at the cut-off distance of rCoulomb = 1.2nm is set to
10−5. Temperature coupling is implemented using the Bussi-Donadio-Parrinello thermostat at a temperature of 300 K and
a coupling parameter τT = 0.1ps. For pressure coupling we employ the Berendsen barostat with a target pressure of 1 bar
and a coupling parameter of τp = 1.0ps and the compressibility is set to 4.5×10−5 bar−1. For water the TIP4P/ε model3

is employed and ions are treated as point charges with thermodynamically optimised Lennard-Jones parameters by Loche
et al.4.

To mimic closely the experimental setup in a SFB apparatus, we employ a 2d-periodic simulation setup with cleaved
mica sheets as boundaries. Mica are minerals that belong to the group of phyllosilicates, which are mainly composed of
tetrahedral (T) and octahedral (O) layers. The tetrahedral layers consist of SiO4 and AlO4 tetrahedra, with the oxygen
atoms forming the corners and the connection between the individual tetrahedra. Parallel to the tetrahedral layers are
the octahedral layers, formed of Al, Fe or Mg in the centre and oxygen or OH groups at the corners. The individual
layers are connected exclusively by weak van-der-Waals interactions, resulting in perfect cleavage parallel to the layers.
Depending on the combination of the tetrahedral and octahedral layers, two-, three- or four-layer minerals can be formed.
The three-layer minerals are called the mica group. Thus, mica consists of one tetrahedral, one octahedral and a second
tetrahedral layer (T-O-T). As a connection to the next T-O-T layer serve the so-called interlayer ions, e.g. K, Na or
Ca. The mica surface considered in this work, muscovite (light mica), is dioctahedral and has the simplified structural
formula KAl2[(OH)2 AlSi3 O10], which indicates that two of the octahedral sites are exclusively occupied by Al and the
third octahedral site is not occupied, whereas the tetrahedral sites are occupied by both Si and Al atoms5,6. For the
computational model, a muskovite unit cell from InterfaceFF7 is used. The InterfaceFF force field package is a database
consisting of atomistic nanostructures and corresponding force field parameters to allow for simulations with a high
chemical accuracy. See S1(a) for a snapshot of the simulated muscovite double layer setup.

The system is prepared by cleaving the mica sheet to a structure-less wall mimicking a silica substrate, implemented
via an integrated 9-3 Lennard-Jones potential corresponding to the integrated areal number density 0.68 nm−1 of atoms
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Fig. S1 Atomistic simulation system. (a) Snapshot of the mica double layer structure. Only the interlayer cations are shown here for
clarity. (b) Solvated structure at distance D = 15nm between the outermost mica atoms. Mica layers are non-covalently bound to
silicon (indicated by shaded blue area) via van-der-Waals forces. Shown is the case without added salt, i.e. only the surface
counter-ions are present.

of the same kind as the silicon atoms in the mica sheets. The mica sheets are separated from the walls by an interlayer of
potassium cations. The system is simulated with 2D periodic boundary conditions for Lennard-Jones interactions and the
Yeh-Berkowitz correction8 for the Ewald sum with an effective vacuum layer between the periodic images of two times
the simulation box volume. The initial structure is separated by a distance of D = 15nm and filled with water, followed by
steepest descent minimisations with a maximum of 10000 steps at a 0.01 nm step size and terminated at a maximum force
of 5 kJmol−1 nm−1 and subsequent equilibration in the constant volume NVT ensemble, see Fig. S1(b). Then, a NPT run
with anisotropic Berendsen pressure coupling was performed for 10 ns, yielding lateral dimensions (2.88×3.00)nm2 and
width in z direction 2.04 nm. In the production runs the distance D is varied and corresponding amounts of water and salt
ion pairs are as described below. Note that in the aqueous phase the K surface counter-ions have been replaced by Na to
avoid mixing effects of different salts in this study.

S1.2 Simulations at controlled water chemical potential

The computer simulation of interacting surfaces is still posing a challenging task, as the chemical potential of the confined
species needs to be accounted for. We here follow the thermodynamic extrapolation method established for a single species
(namely water)9 but generalise this approach to the case of (binary) mixtures. In detail, we imply charge neutrality in the
simulation box by treating separately the counter-ions that compensate for the surfaces’ charge and the added salt. The
number of water molecules, Nw, and salt ion pairs, Nion is adjusted for a given, fixed, surface separation D in order to
match the chemical potential in bulk at the desired concentration cb in bulk. The latter is determined as described below
in a cubic simulation box containing Nw = 2111 water molecules, corresponding to a box length of ∼ 4nm. Using that
the concentration of water at atmospheric conditions and T = 300K is 55mol/l, the number of salt molecules that need
to be added then follows as Nw = cion ·Nw/(55mol/l), corresponding to Nion = 4 at the lowest concentration considered,
cb = 0.1mol/l, up to Nion = 77 at the highest concentration considered here, cb = 2.0mol/l.

In order to measure the chemical potential of species α with an accuracy as high as 0.01 kBT , we split µ into its
contributions stemming from the ideal gas, from the Lennard-Jones interactions, and the Coulomb energy, respectively,
according to

µα(z) = µid
α (z)+µLJ

α (z)+µCoul
α (z). (S1)

Note that at interfaces or in confinement, the terms appearing in S1 in general depend on the position z normal to the
interface. The first term is the ideal gas contribution kBT log

(
ρα(z)Λ3

α

)
, where ρα(z) is the local number density and
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Λα =
√

h2/(2πmαkBT ) is the thermal de Broglie wavelength and mα the mass of particles of species α. In thermodynamic
equilibrium, the total chemical potential µα is independent of the position z, therefore it can be evaluated at an arbitrary
position, which we choose for convenience in the centre of the water slab between the surfaces.

To obtain the excess chemical potentials it has proven convenient to employ a modified Hamiltonian approach9,10

evaluating the free energy difference between a non-interacting molecule/salt ion pair and a fully coupled one, where
the coupling is characterized by a parameter λ ∈ [0,1] scaling the vdW/electrostatic interactions. The free energy differ-
ence between distinct λ states is then evaluated by the MBAR method, minimising the statistical uncertainty.11. In our
simulations, we employ 38 λ states, cf. Table S1 and evaluate the corresponding free energy changes using PyMBAR12.
However, a significant reduction of the computation time can be achieved by realising that a TIP4P/ε water molecule
consists of a single LJ interaction site only, therefore it is convenient to evaluate µLJ

w via the Widom Test Particle Insertion
method (TPI)13, rendering the first 20 λ states obsolete for water.

Table S1 Overview over the λ-states employed for the modified Hamiltonian simulations with the corresponding scaling factors.

state 0 1 2 3 4 5 6 7 8 9 10 11 12
λcoul 0 0 0 0 0 0 0 0 0 0 0 0 0
λVdW 0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

state 13 14 15 16 17 18 19 20 21 22 23 24 25
λcoul 0 0 0 0 0 0 0 0 0.075 0.15 0.225 0.30 0.375
λVdW 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0 1.0 1.0 1.0 1.0 1.0

state 26 27 28 29 30 31 32 33 34 35 36 37
λcoul 0.45 0.5 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.0
λVdW 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

S2 Dielectric constant of the explicit solvent dumbbell model

S2.1 Apparent dielectric constant from DFT calculations of a plate capacitor

To estimate the dielectric constant of the dumbbell solvent model presented in detail in the main text, we here follow
an approach based on a plate capacitor setup, depicted in the inset of Fig. S2. The capacitor consists of two plates with
opposite charge density ±Q and is filled with the solvent model at the bulk concentration ρs = 55.6mol/l. A potential
difference ∆ψ = 2ψ0 = 2kBT ≈ 0.05V is applied over a slit with D = 4nm.

We then determined the apparent dielectric constant of the capacitor, i.e. assuming that it can be described in terms
of a homogeneous dielectric background of the same width D based on the surface charge density: for a plate capacitor
filled with a homogeneous dielectric, latter is given by

Q =C∆ψ =
ε0εr

D
∆ψ = ε0εrE. (S2)

Note that the actual dielectric constant in bulk might be underestimated using this approach since interfacial effects
(observed in Fig. S2 as deviations from the linear behaviour) need to be taken into account properly, which is typically
done either by assuming a serial setup of capacitors14 or through effective medium theory15,16. As observed in the
aformentioned studies, the apparent dielectric constant can – depending on the interfacial properties – converge slowly to
the bulk dielectric constant with increasing slit width D.

Solving Eq. (S2) for εr and employing the electrostatic potential profile obtained in our DFT formulation explained in
detail in the main text, yields εr/εb ≈ 2.4. Since we want to compare solvent-implicit calculations to the explicit solvent
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Fig. S2 Capacitor setup for the solvent dielectric constant calculation Electrical potential along the z-axis perpendicular to the
two plates with separation D = 4nm for bulk solvent concentration ρs,b = 55.6mol/l. The diameter of the solvent beads is
σs = 0.2nm and the dipole moment 1.85 D, the surface potential ψ0 = 1kBT/e, and temperature T = 293 K. The inset shows the
schematic model of the capacitor consisting of two infinite plates with surface charge density Q and pure dumbbell solvent inside.

case, where all electrostatic interactions are scaled by εb = 4.1, the corresponding value in the solvent-implicit calculations
εr ≈ 2.4 ·4.1 = 9.8, which is the value given in the main text.

S2.2 Dielectric constant of the dumbbell model from explicit molecular dynamics simulations

In order to validate the estimation of the solvent dielectric constant from the capacitor setup, we additionally performed
MD simulations of a pure bulk system of dumbbell molecules using the GROMACS simulation package1. Note that we
explicitly checked that simulations using ESPResSo17 and LAMMPS18 converge to the same value εr.
In detail, we set up a cubic box of 2nm sidelength containing 268 dumbbell molecules in all simulation packages, corre-
sponding to a density of 55.6mol/l. We explicitly checked for the absence of finite size effects by performing simulations
using the same density in cubic boxes of sidelengths 1.5− 4nm using GROMACS, yielding numerically identical re-
sults within the statistical uncertainty. The dumbbell charges are scaled by a factor 1/

√
εb to account for the dielectric

background εb = 4.1 and the hard-sphere interaction is replaced by a Weeks-Chandler-Andersen potential,

u(r) =

 4u0

[(
σs
r

)12 −
(

σs
r

)6
]
+u0, r < σs

0, r > σs
, (S3)

where u0 = 12kBT ensures a strong repulsive interaction between the solvent sites of diameter σs. The bead-bead distance
of the solvent model is fixed to 0.2nm using the LINCS algorithm19 with 4th order expansion and 1 iteration step.
Temperature is controlled using the Bussi-Donadio-Parrinello thermostat20 with a characteristic timescale of 0.1ps and
electrostatic interactions are treated using the Particle-Mesh Ewald method with the relative strength of the shifted direct
potential at the cut-off distance of rCoulomb = 0.4nm set to 10−5. We chose to set the mass of each bead to 9 atomic mass
units and a integration timestep of 0.5fs was employed with positions recorded every 1ps for a simulation time of 5ns.
After neglecting an initial equilibration time of 100ps, the dielectric constant is then evaluated from the total dipole
moment fluctuations, calculated as MMM = ∑i qirrri, where qi is the charge and rrri the position of bead i, according to21

εr = 1+
⟨M2⟩−⟨M⟩2

3ε0V kBT
. (S4)
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The obtained value εr ≈ 4.4 is in fairly good agreement with the DFT result (εr ≈ 2.4) considering that the latter neglects
the interfacial effects14–16.
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