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CONVOLUTION VOLTAMMETRY

Convolution Voltammetry, also called semi-integral electroanalysis, combines Faraday's law and 
Fick's second law to describe the concentration of a redox-active material at the electrode surface. 
One particular advantage of the technique is that it is signal-independent; that is, regardless of 
the shape of the current function, convolution voltammetry will describe the concentration (on the 
timescale of cyclic voltammetry). The principles of convolution voltammetry have been known 
since at least the 1950s,1,2 although its relevance for cyclic voltammetry was better recognized in 
the early 1970s.3–5 To help the reader understand the essence of convolution voltammetry, two 
derivations will be provided below. The first is heuristic, and the second is more rigorous, invoking 
Laplace techniques. Both describe the equation,
𝑜𝑥+ 𝑛𝑒 ‒→𝑟𝑒𝑑

Heuristic Derivation
We start with Faraday's law:

‒ 𝐼
𝑛𝐹𝐴𝐷

=
∂
∂𝑥

𝑐𝑜𝑥

where I is the faradaic current (I < 0 for reduction), n is the number of electrons transferred (n > 0 
for reduction), F is Faraday's constant, A is the electrode surface area, D is the diffusion coefficient 
of the substrate, and cox is the concentration of the oxidized substrate. We also write Fick's second 
law:

𝐷
∂2

∂𝑥2
𝑐𝑜𝑥=

∂
∂𝑡

𝑐𝑜𝑥

The key transformation is to observe that, if  and  are equivalent operators, they are 
𝐷

∂2

∂𝑥2
∂
∂𝑡

equivalent at any power. That is, if an operation returns  when performed twice, it would also 
𝐷

∂2

∂𝑥2

return  when performed twice. We can write:

∂
∂𝑡
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𝐷
∂
∂𝑥

𝑐𝑜𝑥=±
∂1/2

∂𝑡1/2
𝑐𝑜𝑥

where  is the semiderivative with respect to time. Plugging this result into Faraday's law 

∂1/2

∂𝑡1/2

above, we find:
‒ 𝐼

𝑛𝐹𝐴 𝐷
=±

∂1/2

∂𝑡1/2
𝑐𝑜𝑥

Taking the semi-integral of both sides affords the expression:

𝑐𝑜𝑥 ‒ 𝑐0 =∓
∂ ‒ 1/2

∂𝑡 ‒ 1/2

𝐼
𝑛𝐹𝐴 𝐷

where c0 is the initial bulk concentration of the substrate. Because the expression being semi-
integrated is always negative (I and n have opposite signs), and because c0 ≥ cox, we find that the 
plus sign is needed. Thus, the concentration is given by:

𝑐𝑜𝑥= 𝑐0 +
∂ ‒ 1/2

∂𝑡 ‒ 1/2

𝐼
𝑛𝐹𝐴 𝐷

Reference 4 provides a thorough explanation of how to find derivatives/integrals of any order.

Formal Derivation
We first define the deviation variable C = cox – c0. Taking the Laplace transform of Fick's 

second law converts the equation from a partial differential equation to an ordinary differential 
equation:

𝐷
∂2

∂𝑥2
𝐶= 𝑠𝐶

where an overbar denotes a function in Laplace space. This differential equation has the solution:
𝐶= 𝑎1𝑒

𝑥 𝑠/𝐷+ 𝑎2𝑒
‒ 𝑥 𝑠/𝐷

where a1 and a2 are unknown constants. Observing that the concentration is finite at large x, we 
must have a1 = 0, and so
𝐶= 𝑎2𝑒

‒ 𝑥 𝑠/𝐷

If we plug this expression into Faraday's law, we find:
‒ 𝐼

𝑛𝐹𝐴𝐷
=‒

𝑠
𝐷
𝐶

which upon rearrangement yields:

𝐶=
𝐼

𝑛𝐹𝐴 𝐷𝑠
According to the convolution theorem, the inverse Laplace transform of the product of two 
functions in Laplace space, equals the convolution of the two functions in the time domain. As the 

inverse transform of  is  , we have:

1
𝑠

1
𝜋𝑡

𝑐𝑜𝑥= 𝑐0 +
1

𝑛𝐹𝐴 𝐷

𝑡

∫
0

𝐼(𝑡 ‒ 𝜏)
𝜋𝜏

𝑑𝜏
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One of the benefits of the convolution technique is that the integral may be adapted to more 
complicated electrochemical systems. For example, if, upon reduction, the species cred decayed 
by a first-order reaction (with rate constant k), we should add a chemical reaction term to Fick's 
second law, namely:
∂
∂𝑡

𝑐𝑟𝑒𝑑= 𝐷
∂2

∂𝑥2
𝑐𝑟𝑒𝑑 ‒ 𝑘𝑐𝑟𝑒𝑑

After the same transformations as above, we find the following expression for the concentration 
in the Laplace domain:

𝑐𝑟𝑒𝑑=
‒ 𝐼

𝑛𝐹𝐴 𝐷(𝑠+ 𝑘)

observing that  . Upon returning from Laplace space, the concentration of the 

𝐼
𝑛𝐹𝐴𝐷

=
∂
∂𝑥

𝑐𝑟𝑒𝑑

reduced intermediate is described by the following convolution integral:

𝑐𝑟𝑒𝑑=
‒ 1

𝑛𝐹𝐴 𝐷

𝑡

∫
0

𝐼(𝑡 ‒ 𝜏)𝑒 ‒ 𝑘𝜏

𝜋𝜏
𝑑𝜏

Electrochemical systems with pre- or post- equilibria may be treated in an analogous way.

CYCLIC VOLTAMMETRY ANALYSIS SUMMARY 

 

Electrolyte

peak current / A

1+ reduction
dimer oxidation

(ox1)
1H oxidation

(ox2) pH

Na2CO3
NaN3

Na2B4O7
[b]

K2HPO4
Na2HPO4
NaHCO3

CaCl2
(NH4)2HPO4

Na2SO4
KNO3
LiBr
KCl

MgSO4
KBr

NaCl
NaBr

NaNO3
NH4Cl

NH4H2PO4
NaH2PO4
citrate[c]

oxalate[d]

Bu4NBr
Pr4NBr

pyruvate[c]

acetate[c]

propionate[c]

gluconate[d]

-1.295 ± 0.001
-1.296
-1.307
-1.299

-1.305 ± 0.001
-1.295 ± 0.001

-1.31
-1.302

-1.304 ± 0.001
-1.301 ± 0.001

-1.296
-1.303
-1.299

-1.302 ± 0.001
-1.293 ± 0.001
-1.301 ± 0.001

-1.3 ± 0.001
-1.307 ± 0.001

-1.312
-1.303

-1.304 ± 0.001
-1.301
-1.283
-1.289
-1.314

-1.309 ± 0.001
-1.309
-1.303

17.4 ± 0.1
18.22 ± 0.01
15.62 ± 0.06

16.7 ± 0.1
14.81 ± 0.05
17.41 ± 0.05
13.35 ± 0.08
15.14 ± 0.02
16.89 ± 0.09
17.2 ± 0.04

16.73 ± 0.09
16.95 ± 0.07
16.4 ± 0.02

16.59 ± 0.01
18.06 ± 0.09
17.78 ± 0.01

17.0 ± 0.2
16.31 ± 0.02
11.92 ± 0.02
10.88 ± 0.03

16.4 ± 0.2
18.1 ± 0.1

14.42 ± 0.04
15.21 ± 0.03
12.66 ± 0.01
15.39 ± 0.09
14.85 ± 0.02
15.38 ± 0.05

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

0.04
0.07

-
-
-
-

4.4 ± 0.1
-
-
-

11.2
10.1
9.6
9.2
9.1
8.9
8.8
8.3
7.7
7.3
7.3
7.2
7.2
7.1
6.9
6.6
6.5
6.2
4.7
4.6
8.9
7.8
7.2
7.2
7.0
6.9
6.7
6.7

peak potential / V vs SCE[a]

1+ reduction
dimer oxidation

(ox1)
1H oxidation

(ox2)

42.5 ± 0.2
43.76 ± 0.07
41.35 ± 0.03
41.45 ± 0.01

39.7 ± 0.1
42.56 ± 0.09

35.7 ± 0.2
40.46 ± 0.04

41.2 ± 0.1
43.6 ± 0.2
43.2 ± 0.1
44.3 ± 0.2
41.1 ± 0.1
43.3 ± 0.1
42.9 ± 0.1

43.78 ± 0.05
42.1 ± 0.2

44.57 ± 0.02
40.9 ± 0.1
38.3 ± 0.2
42 ± 0.2

44.49 ± 0.03
38.1 ± 0.2
39.3 ± 0.2

44.29 ± 0.07
41.2 ± 0.1

38.88 ± 0.05
40.7 ± 0.2

-0.049
-0.056
-0.049

-0.036 ± 0.001
-0.001 ± 0.001
-0.052 ± 0.002
0.017 ± 0.002

-0.019
-0.012 ± 0.003

-0.029
-0.051 ± 0.001
-0.02 ± 0.002

-0.041
-0.032 ± 0.001
-0.056 ± 0.001
-0.039 ± 0.002

-0.038
0.000 ± 0.001
0.012 ± 0.003
-0.025 ± 0.001
-0.036 ± 0.001
-0.033 ± 0.001
-0.001 ± 0.001
-0.025 ± 0.001
-0.008 ± 0.001

-0.039
-0.025 ± 0.002
-0.037 ± 0.003

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

0.35 ± 0.002
0.35 ± 0.001

-
-
-
-

0.489 ± 0.002
-
-
-

Table 1. CV output data from inorganic (top) and organic (bottom) electrolytes tested with 
1+, including the peak currents and peak potentials for 1+ reduction, 1dim oxidation (ox1), 
and 1H oxidation (ox2). Values are reported as the average and one standard deviation 
with n = 3. Experiments were performed using 2 mM 1+ with 200 mM supporting 
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electrolyte purged with N2 and at 25 °C and 800 mV s-1. [a] Unless otherwise noted, the 
standard deviation for a given peak potential was less than 1 mV. [b] 100 mM Sodium 
tetraborate decahydrate was used. [c] Sodium counterion was used. [d] Potassium 
counterion was used.
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1H-NMR SPECTRA OF NAD+/NADH MIMETICS

Figure S1. 1H-NMR spectrum for 1-n-butyl-1,4-dihydro nicotinamide (1H).
1H NMR (500 MHz, DMSO-d6) δ 6.84 (d, J = 1.5 Hz, 1H), 6.49 (s, 1H), 5.84 (dd, J = 8.0, 1.6 Hz, 
1H), 4.55 (dt, J = 8.1, 3.4 Hz, 1H), 3.05 (t, J = 7.0 Hz, 2H), 2.93 (d, J = 2.0 Hz, 2H), 1.41 (p, 
J = 7.5 Hz, 2H), 1.24 (h, J = 7.4 Hz, 2H), 0.87 (t, J = 7.4 Hz, 3H).
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Figure S2. HMBC spectrum for 1-n-butyl-1,4-dihydro nicotinamide (1H) in DMSO-d6.
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Figure S3. 1H-NMR spectrum for 1-n-butyl nicotinamide bromide (1+).
1H NMR (500 MHz, DMSO-d6) δ 9.48 (t, J = 1.5 Hz, 1H), 9.20 (d, J = 6.0 Hz, 1H), 8.91 (d, 
J = 8.3 Hz, 1H), 8.55 (s, 1H), 8.25 (dd, J = 8.1, 6.1 Hz, 1H), 8.16 (s, 1H), 4.64 (t, J = 7.5 Hz, 2H), 
1.91 (p, J = 7.5 Hz, 2H), 1.29 (h, J = 7.4 Hz, 2H), 0.90 (t, J = 7.4 Hz, 3H).
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Figure S4. 1H-NMR spectrum for 1-ethyl nicotinamide bromide (2).
1H NMR (500 MHz, CD3CN) δ 9.56 (s, 1H), 8.91 (d, J = 8.1 Hz, 1H), 8.81 (d, J = 6.1 Hz, 1H), 8.12 
(t, J = 7.2 Hz, 1H), 7.88 (s, 1H), 6.61 (s, 1H), 4.68 (q, J = 7.4 Hz, 2H), 1.66 (t, J = 7.4 Hz, 3H).
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Figure S5. 1H-NMR spectrum for 1-n-butyl nicotinamide bromide (1+) in D2O, with and without 
200 mM sodium pyruvate.
1H NMR (500 MHz, D2O) δ 9.15 (s, 1H), 8.85 (dd, J = 6.0, 1.5 Hz, 2H), 8.72 (dt, J = 8.2, 1.6 Hz, 
1H), 8.01 (dd, J = 8.1, 6.1 Hz, 2H), 4.52 (t, J = 7.5 Hz, 4H), 1.85 (p, J = 7.6 Hz, 4H), 1.21 (h, J = 
7.4 Hz, 4H), 0.77 (t, J = 7.4 Hz, 5H).
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Figure S6. 1H-NMR spectrum for 1-iso-propyl nicotinamide bromide (3).
1H NMR (500 MHz, DMSO-d6) δ 9.46 (t, J = 1.6 Hz, 1H), 9.29 (d, J = 5.8 Hz, 1H), 8.90 (dt, J = 8.1, 
1.4 Hz, 1H), 8.56 (s, 1H), 8.26 (dd, J = 8.0, 6.1 Hz, 1H), 8.17 (s, 1H), 5.08 (hept, J = 6.7 Hz, 1H), 
1.62 (d, J = 6.7 Hz, 6H).
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Figure S7. 1H-NMR spectrum for 1-allyl nicotinamide bromide (4).
1H NMR (500 MHz, DMSO-d6) δ 9.45 (t, J = 1.6 Hz, 1H), 9.15 (d, J = 5.6 Hz, 1H), 8.97 (dt, J = 8.0, 
1.3 Hz, 1H), 8.60 (s, 1H), 8.29 (dd, J = 8.1, 6.1 Hz, 1H), 8.18 (s, 1H), 6.22 – 6.12 (m, 1H), 5.47 
(s, 1H), 5.45 (dt, J = 6.4, 1.0 Hz, 1H), 5.33 (d, J = 6.3 Hz, 2H).
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