Supporting Information

Alkene reactions with superoxide radical anions in flow electrochemistry

Rojan Ali, Tuhin Patra and Thomas Wirth*

Table of Contents:	
General Information	S2
General Procedures	S4
Optimisation Studies	S5
Characterisation of the Products	S15
NMR Spectra	S17
References	S19

General Information

General:

All chemicals were purchased from Acros Organics, Alfa Aesar, Apollo Scientific Ltd, Fisher Scientific Ltd, Scientific Laboratory Supplies Ltd, Merck KGaA, Fluorochem Ltd, and Sigma-Aldrich. All purchased chemicals were used without further purification. Deuterated solvents for NMR analysis were purchased from Sigma-Aldrich. Room temperature (rt) stands for 20-25 °C. Thin layer chromatography (TLC) experiments were performed on aluminum plates coated with silica (TLC Silica gel 60 F₂₅₄) purchased from Merck, and visualised by UV light. Flash column chromatography was carried out on a Biotage[®] Isolera[™] Four system using Biotage[®] Sfär Silica HC D 10 g cartridges.

NMR:

¹H NMR and ¹³C NMR spectra were recorded at 298 K on a Bruker Fourier 300 MHz, Bruker DPX 400 MHz, or Bruker Avance 500 MHz instrument and were referenced relative to the residual solvent peaks (¹H: CDCl₃, δ 7.26 ppm; ¹³C: CDCl₃, δ 77.16 ppm). Chemical shifts are reported in ppm (δ). The spectra reported use the following abbreviations to express multiplicities: s = singlet, m = multiplet. The coupling constants (J) are expressed in Hertz (Hz).

HRMS:

High resolution mass spectra were obtained from Cardiff University on a Waters GC-TOF spectrometer. Ions were generated using electron ionisation (EI) techniques. All signals are reported with a mass-to-charge (m/z) ratio unit.

GC-FID:

Gas chromatography with flame ionisation detector (GC-FID) was performed on an Agilent 7890A GC system fitted with a Restek Rt- β DEXsm column (30 m × 0.25 mm ID) for optimisation, using benzonitrile as an internal standard.

GC-MS:

GC-MS spectra were recorded on a PerkinElmer Clarus 680 GC and a PerkinElmer Clarus SQ 8C MS fitted with a PerkinElmer Elite-1 100% dimethyl polysiloxane column ($30 \text{ m} \times 0.25 \text{ mm}$ ID).

Electrolysis:

Flow electrochemical experiments were performed using a stand-alone Vapourtec Ion Electrochemical Reactor, with an Aim-TTi EX354RD Dual Power Supply from Thurlby Thandar Instruments Ltd. Chemyx Fusion 100 Touch Syringe Pumps, a Vapourtec SF-10 Reagent Pump, a Vapourtec tuneable back pressure regulator (BPR), and an Omega FMA5500A series mass flow controller were used in the flow set-ups. Electrode materials employed were platinum (Pt) purchased from Goodfellow. The electrodes ($5 \times 5 \text{ cm}^2$) were separated by a 0.5 mm FEP spacer resulting in a reactor volume of 0.6 mL, with an exposed electrode surface area of 12 cm².

Melting points:

Melting points were measured using a Gallenkamp variable heater with samples in open capillary tubes and are uncorrected.

General Procedures

The electrolysis was performed in an undivided cell using a Vapourtec Ion Electrochemical Reactor¹ (FEP spacer = 0.5 mm, reactor volume = 0.6 mL), employing a platinum electrode as the anode and a platinum electrode as the cathode (active surface area = 12 cm² for each electrode). A solution of alkene (0.025 M, 1 equiv.) and "Bu₄NCIO₄ (0.05 M, 2 equiv.) in isobutyronitrile was pumped with a flow rate of 0.1 mL min⁻¹, which combined at a T-piece with molecular oxygen flown through a mass flow controller at 0.1 mL min⁻¹.² The resulting biphasic system was pumped by use of a peristaltic pump³ with a flow rate of 0.2 mL min⁻¹ into the electrochemical reactor, and was electrolysed under pressurised conditions by use of a tuneable back pressure regulator at constant current conditions (16 mA, 2 F). The first one and a half reactor volumes were disposed to ensure a steady state of the system had been reached. After collection for a known period, the reaction mixture was treated with distilled water and the aqueous phase was extracted with dichloromethane (3 × 25 mL). The organic layers were combined, dried over MgSO₄, filtered, and the solvent was removed *in vacuo* to yield the crude product. The crude product was purified by flash column chromatography.

Optimisation Studies

Optimisation reactions:

Table S1: Set-up I optimisation.

a Standard reaction conditions: undivided flow cell, Pt anode (active surface area: 12 cm^2), Pt cathode, interelectrode distance: 0.5 mm, **1a** (0.05 M, 1 equiv.) and ${}^{n}Bu_{4}NCIO_{4}$ (0.05 M) in MeCN sat. with O₂. **b** Yield determined by GC-FID using benzonitrile as internal standard.

Table S2: Set-up II optimisation for flow rate.

a Standard reaction conditions: undivided flow cell, Pt anode (active surface area: 12 cm²), Pt cathode, interelectrode distance: 0.5 mm, **1a** (0.05 M, 1 equiv.) and ⁿBu₄NClO₄ (0.05 M) in MeCN sat. with O₂. **b** Yield determined by GC-FID using benzonitrile as internal standard.

Table S3: Set-up II optimisation for charge.

a Standard reaction conditions: undivided flow cell, Pt anode (active surface area: 12 cm²), Pt cathode, interelectrode distance: 0.5 mm, **1a** (0.05 M, 1 equiv.) and ⁿBu₄NClO₄ (0.05 M) in MeCN. **b** Yield determined by GC-FID using benzonitrile as internal standard.

Table S4: Set-up III optimisation.

a Standard reaction conditions: undivided flow cell, Pt anode (active surface area: 12 cm²), Pt cathode, interelectrode distance: 0.5 mm, **1a** (0.05 M, 1 equiv.) and ⁿBu₄NClO₄ (0.05 M) in MeCN. **b** Yield determined by GC-FID using benzonitrile as internal standard.

a Standard reaction conditions: undivided flow cell, x anode (active surface area: 12 cm²), Pt cathode, interelectrode distance: 0.5 mm, **1a** (0.05 M, 1 equiv.) and ⁿBu₄NClO₄ (0.05 M) in MeCN. **b** Yield determined by GC-FID using benzonitrile as internal standard.

Table S6: Optimisation of concentration.

a Standard reaction conditions: undivided flow cell, Pt anode (active surface area: 12 cm²), Pt cathode, interelectrode distance: 0.5 mm, **1a** (x M, 1 equiv.) and ⁿBu₄NCIO₄ (0.05 M) in MeCN. **b** Yield determined by GC-FID using benzonitrile as internal standard.

Table S7: Optimisation of cathodic material.

Entry	Cathode	Current (mA)	Charge (F)	Yield 2 (%)
1	Cu	16	2	26
2	Ni	16	2	25
3	Zn	16	2	26
4	SS	16	2	20
5	Pt	16	2	25

a Standard reaction conditions: undivided flow cell, Pt anode (active surface area: 12 cm²), cathode, interelectrode distance: 0.5 mm, **1a** (0.05 M, 1 equiv.) and ⁿBu₄NClO₄ (0.05 M) in MeCN, combined flow rate: 0.1 mL min⁻¹. **b** Yield determined by GC-FID using benzonitrile as internal standard.

Table S8: Optimisation of solvent composition.

a Standard reaction conditions: undivided flow cell, Pt anode (active surface area: 12 cm²), Pt cathode, interelectrode distance: 0.5 mm, **1a** (0.025 M, 1 equiv.) and ⁿBu₄NClO₄ (0.05 M) in solvent, combined flow rate: 0.1 mL min⁻¹. **b** Yield determined by GC-FID using benzonitrile as internal standard.

Table S9: Set-up IV optimisation for back pressure.

a Standard reaction conditions: undivided flow cell, Pt anode (active surface area: 12 cm²), Pt cathode, interelectrode distance: 0.5 mm, **1a** (0.025 M, 1 equiv.) and ⁿBu₄NClO₄ (0.05 M) in ^{*i*}PrCN, combined flow rate: 0.2 mL min⁻¹. **b** Yield determined by GC-FID using benzonitrile as internal standard.

Table S10: Set-up IV optimisation for charge.

a Standard reaction conditions: undivided flow cell, Pt anode (active surface area: 12 cm²), Pt cathode, interelectrode distance: 0.5 mm, **1a** (0.025 M, 1 equiv.) and ⁿBu₄NClO₄ (0.05 M) in ^{*i*}PrCN, combined flow rate: 0.2 mL min⁻¹. **b** Yield determined by GC-FID using benzonitrile as internal standard.

GC-MS study on side products

Electrochemical Flow Equipment

Figure S1: A closed Vapourtec Ion Electrochemical Flow Reactor (left), Pt electrode, Pt electrode and 0.5 mm FEP spacer (right).

Figure S2: An open Vapourtec Ion Electrochemical Flow reactor.

Figure S3: An Omega FMA5500A series mass flow controller.

Figure S4: Vapourtec SF-10 reagent pump.

Figure S5: Vapourtec tuneable back-pressure regulator.

Failed alkenes for oxidative cleavage

All starting material was consumed for all three substrates following the reaction, however only decomposition products were detected by ¹H NMR and ¹³C NMR analysis.

Characterisation of the Products

Benzophenone (2)

Prepared according to the general procedure **A** from 1,1-diphenylethylene **1a** (68 mg, 0.375 mmol) over 2.5 h. The crude product was purified by flash column chromatography on silica gel (EtOAc:cyclohexane = 1:19) to give **2** as a colourless solid (30 mg, 0.17 mmol, 45%).

¹H NMR (500 MHz, CDCl₃): δ 7.82-7.80 (m, 4H), 7.61-7.57 (m, 2H), 7.50-7.47 (m, 4H).

¹³C NMR (126 MHz, CDCl₃): δ 196.9, 137.7, 132.5, 130.2, 128.4.

HRMS (EI): *m*/*z* [M]⁺ calcd for C₁₃H₁₀O 182.07262, found 182.0722.

mp: 48–51 °C.

NMR data is identical to the literature data.4

Benzophenone (2)

Prepared according to the general procedure **A** from 1,1-diphenyl-1-pentene **1b** (83 mg, 0.375 mmol) over 2.5 h. The crude product was purified by flash column chromatography on silica gel (EtOAc:cyclohexane = 1:19) to give **2** as a white solid (23 mg, 0.12 mmol, 33%).

Benzophenone (2)

Prepared according to the general procedure **A** from 1,1,2-triphenylethene **1c** (96 mg, 0.38 mmol) over 2.5 h. The crude product was purified by flash column chromatography on silica gel (EtOAc:cyclohexane = 1:19) to give **2** as a white solid (18 mg, 0.10 mmol, 27%).

Acetophenone (3)

Prepared according to the general procedure **A** from α -methylstyrene **1d** (59 mg, 0.50 mmol) over 3.33 h. The crude product was purified by column chromatography on silica gel (EtOAc:cyclohexane = 1:19) to give **3** as a clear oil (24 mg, 0.20 mmol, 39%).

¹H NMR (500 MHz, CDCl₃): δ 7.97-7.95 (m, 2H), 7.58-7.54 (m, 1H), 7.48-7.44 (m, 2H), 2.60 (s, 3H).

¹³C NMR (126 MHz, CDCl₃): δ 198.3, 137.2, 133.2, 128.7, 128.4, 26.7.

HRMS (EI): *m*/*z* [M]⁺ calcd for C₈H₈O 120.05697, found 120.0569.

NMR data is identical to the literature data.4

NMR Spectra

¹H NMR of benzophenone (2)

¹H NMR of acetophenone (3)

References

- 1. Ion stand-alone electrochemical reactor, https://www.vapourtec.com/products/flowreactors/ion-stand-alone-electrochemical-reactor/ (accessed February 2023).
- 2. Gas Mass flowmeter and controllers, https://www.omega.co.uk/pptst/FMA5400A_5500A.html (accessed February 2023).
- 3. SF-10 reagent pump features, https://www.vapourtec.com/products/sf-10-pump-features/ (accessed February 2023).
- 4. Y. Imada, Y. Okada, K. Noguchi and K. Chiba, Angew. Chem. Int. Ed., 2019, 58, 125.