Supplementary Information

Gating Ion and Fluid Transport with Chiral Solvent

Savannah Silva,^{1,*} Siddharth Singh,^{2*} Ethan Cao,¹ John T. Fourkas,^{2,3} Zuzanna S. Siwy^{1,4,5}

¹Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA

²Department of Chemistry and Biochemistry, ³Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, USA

⁴Department of Chemistry, ⁵Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA

Figure S1. Ion current anisotropy, *A*, defined in eq. (1) of the main manuscript for a single PET polymer pore with an opening of 370 nm.

Figure S2. Current-voltage curves for a 30 nm in diameter silicon nitride pore, designated as O3, recorded in the LiClO₄ concentration gradient of 1 mM/10 mM prepared in racemic and enantiomeric solutions. Note, the large difference in ion current magnitudes for the racemic and enantiomeric solutions. We do not have yet explanation for this effect.