Electronic Supporting Information (ESI)

Selective electrosynthesis of platform chemicals from the electrocatalytic

reforming of biomass-derived hexanediol

Yun-Ju Liao¹, Shih-Ching Huang¹, Chia-Yu Lin^{1,2,3*}

¹Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan

²*Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan.*

³Program on Key Materials & Program on Smart and Sustainable Manufacturing, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan, 70101 Taiwan

* Corresponding authors: cyl44@mail.ncku.edu.tw

Contents

Supporting Tables S1-S2	page S2
Supporting Scheme S1	page S3
Supporting Figures S1–S8	page S4

Table S1 Summary of results obtained from 2-h CPE of nanoNiOOH-borate at 1.55 V vs. RHE in 1.0 M NaOH solution containing 0.4 M ε-caprolactone.

	Parameters							
Charge passage (C cm ⁻²)	FE _{AA} (%)	R _{AA} (mmole cm ⁻² h ⁻¹)	TOF _{AA} (s ⁻¹)					
484.92 ± 67.78	86.35 ± 0.10	0.54 ± 0.08	0.39 ± 0.05					

Table S2 Summary of results obtained from 2-h CPE of Ni|NiOOH at 1.55 V vs. RHE in 1.0 M NaOH solution containing 0.4 M 1,6-hexanediol.

Parameters							
Charge passage (C cm ⁻²)	FE _{6HA} (%)	FE _{AA} (%)	R _{6HA} (μmole cm ⁻² h ⁻¹)	R _{AA} (μmole cm ⁻² h ⁻¹)	R _{AA} /R _{6HA}	TOF _{6HA} (s ⁻¹)	TOF _{AA} (s ⁻¹)
19.91 ± 5.52	18.25 ± 2.04	17.67 ± 4.48	12.16 ± 1.23	6.43 ± 1.63	0.53	0.06 ± 0.01	0.03 ± 0.01

Scheme S1 Schematic illustration of 5 cm² flow-type electrochemical cell.

Figure S1 (a) Potential transient recorded during the PED preparation of the nanoNiOOH-borate electrode. (b) Cyclic voltammetry, recorded at a scan rate of 50 mV s⁻¹, during the preparation of the Ni|NiOOH electrode.

Figure S2 Charge transient recorded during the 2-h CPEs of the nanoNiOOH-borate electrode at various applied potentials in NaOH solution (1.0 M) containing 1,6-hexanediol (0.4 M).

Figure S3 Current transient recorded during the 2-h CPEs of the nanoNiOOH-borate electrode at 1.55 V vs. RHE in NaOH solution (1.0 M) containing ε-caprolactone (0.4 M).

Figure S4 HPLC chromatograms, recored with (a) RID detector and (b) PDA detector, of the electrolyte solution before (i) and after 2-h CPEs at different applied potentials (ii: 1.40 V; iii: 1.45 V; iv: 1.50 V; v: 1.55 V; vi: 1.60 V).

Figure S5 CVs of the nanoNiOOH-borate electrode, recorded at a scan rate of 10 mV s⁻¹, in (i) the blank and (ii) the 1,6-hexanediol (0.4 M)-contained electrolyte solutions (a: 0.1 M borate buffer; b: 0.1 M NaOH; c: 5 M NaOH).

Figure S6 (a) Charge transient, (b) J_{total} , J_{AA} , and J_{6HA} , (c) FE_{AA} and FE_{6HA} , and (d) R_{AA} and R_{6HA} , obtained from 2-h CPEs of the nanoNiOOH-borate electrode at various applied potentials in NaOH (0.1 M) solution containing 1,6-hexanediol (0.4 M).

Figure S7 (a) Charge transient, (b) J_{total} , J_{AA} , and J_{6HA} , (c) FE_{AA} and FE_{6HA} , and (d) R_{AA} and R_{6HA} , obtained from 2-h CPEs of the nanoNiOOH-borate electrode at various applied potentials in borate buffer (0.1 M, pH 9.2) containing 1,6-hexanediol (0.4 M).

Figure S8 Chronopotentiograms of the nanoNiOOH-borate electrode recorded at applied current densities of (i) 25 mA cm⁻² and (ii) 50 mA cm⁻² in NaOH solution (1.0 M, pH 13.6) containing 1,6-hexanediol (0.4 M).