Summary of Parameters and Conditions Used in Simulations

Spatio-Temporal Detachment of Homogeneous Electron Transfer in Controlling Selectivity in Mediated Organic Electrosynthesis

Jack W. Hodgson, Ana A. Folgueiras-Amador, Derek Pletcher, David C. Harrowven, Guy Denuault and Richard C. D. Brown

General Information

- 1D simulations were carried out using DigiElch v.8 and COMSOL Multiphysics v.6.0 whereas 2D simulations were performed with COMSOL Multiphysics v.6.0. The simulations modelled 2 boundary conditions for 1 D. An inert wall that acted to constrain the model to a finite geometry and an electrode. For 2D models an inflow and outflow were added as extra boundary conditions.
- Heterogeneous electrochemical reactions were modelled with Butler-Volmer kinetics after an application of a potential step to -2.8 V unless otherwise stated. Simulations modelled the current response and concentration profiles for this potentiostatic control.
- Charge transfer coefficients were left at their default value of 0.5 and were not investigated in this work.
- Rate constants for homogeneous reaction steps were taken from the literature where appropriate or approximated from similar steps.
- Diffusion coefficients were determined by recording voltammograms over a range of sweep rates and analysing the sweep rate dependence of the background corrected reduction peaks at ~-2.2 V vs SCE for **1** and ~-2.5 V vs SCE for **M**. The following values were obtained and used in simulations. $D_1 = 3.3 \times 10^{-5} \ cm^2 \ s^{-1}$ and $D_M = 2.0 \times 10^{-5} \ cm^2 \ s^{-1}$.
- The diffusion coefficients of 1⁻⁻, 2, 3, 6, 15 were assumed to be equal to that on 1.
- The diffusion coefficient of M^{-} assumed to be equal to that of M.

Rate constants

Step	Reaction	Parameters
1 ^[a]	$1 + e^- \rightarrow 1^{\cdot -}$	$E^0 = -2.2 V$ vs SCE, BV kinetics, $\alpha = 0.5$, $k_s = 5 \times 10^{-3} cm s^{-1}$
2 ^[1]	$1^{-} \rightarrow 4$	$k = 10^{10} \ s^{-1}$
3 ^[2, b]	$4 + e^- \rightarrow 3$	$E^0=0.0~V~{\rm vs}$ SCE, BV kinetics, $\alpha=0.5,k_s=3\times10^{-2}~cm~s^{-1}$
4 ^[a]	$M + e^- \rightarrow M^{\cdot -}$	$E^0 = -2.5 V$ vs SCE, BV kinetics, $\alpha = 0.5, k_s = 3 \times 10^{-2} cm s^{-1}$
5 ^[3]	$1 + M^{\cdot -} \to 1^{\cdot -} + M$	$k = 4.0 \times 10^5 \ mol^{-1} \ dm^3 \ s^{-1}$
6 ^[4]	4 ightarrow 6	$k = 8 \times 10^9 s^{-1}$
7 ^[5, c]	$6+M^{\cdot-}\rightarrow 2+M$	$k = 10^9 mol^{-1} dm^3 s^{-1}$
8 ^[6]	6+6 ightarrow 15	$k = 10^9 mol^{-1} dm^3 s^{-1}$
9 ^[3, c]	$6 + e^- \rightarrow 2$	$E^0 = -1.36 V$ vs SCE, BV kinetics, $\alpha = 0.5$, $k_s = 2 \times 10^{-12} cm s^{-1}$
10 ^[7]	$4 + M^{\cdot -} \rightarrow 3 + M$	$k = 10^{10} \ mol^{-1} \ dm^3 \ s^{-1}$
11 ^[7]	$1^{\cdot-}+4\rightarrow 1+3$	$k = 10^{10} \ mol^{-1} \ dm^3 \ s^{-1}$

^[a] The standard potential and rate constant for heterogeneous electron transfer were obtained from simulated voltammograms fitted to the experimental voltammetry. ^[b] Aryl radical **4** was considered to convert directly to product **3** upon reduction at electrode and via mediated reduction.^[c] Alkyl radical **6** was considered to convert directly to product **2** upon reduction at electrode and via mediated reduction.

References

^[1] For excellent reviews of reductive electrochemistry of aryl halides, see: (a) J.-M. Savéant in Advances in Physical Organic Chemistry, Vol. 26 (Ed.: D. Bethel), Academic Press, New York, 1990, pp. 1–130; (b) J. Grimshaw in Electrochemical Reactions and Mechanisms in Organic Chemistry, Elsevier Science, Amsterdam, 2000, pp. 89–157 (c) Faster Dissociation: Measured Rates and Computed Effects on Barriers in Aryl Halide Radical Anions Norihiko Takeda, Pavel V. Poliakov, Andrew R. Cook, and John R. Miller, J. Am. Chem. Soc., 2004, **126**, 4301-4309

^[2] Claude P. Andrieux and Jean Pinson, J. Am. Chem. Soc., 2003, **125**, 14801-14806

^[3] Claude P. Andrieux, C. Blocman, J.-M. Dumas-Bouchiat and Jean-Michel Saveant, *J. Am. Chem. Soc.*, 1979, **101**, 3431-3441

[4] a) A. Annunziata, C. Galli, M. Marinelli and T. Pau, *Eur. J. Org. Chem.*, 2001, **7**,1323-1329. b) A. N.
 Abeywickrema and A. L. J. Beckwith, *J. Chem. Soc., Chem. Commun.*, 1986, 464-465

^[5] D. Occhialini, J. S. Krisensen, K. Daasbjerg and H. Lund, *Acta Chemica Scandinavica*, 1992, *46*, 474-481.

^[6] The rate constant ($k_8 = 10^9 \text{ mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$) for homocoupling of alkyl radical **6** to give the dimer **15** (step (8)) is approximated to a literature value for dimerisation of 2-phenylethyl. Journal of Physical and Chemical Reference Data 25, 709 (1996); https:// doi.org/10.1063/1.555978

^[7] Reactions are thought to be diffusion limited. Chami, Z., Gareil M., Pinson J., Saveant J.-M. and Thiebault A., *J. Org. Chem.*, 1991, **56**, 586-595