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1 Electronic structure calculations
Plane-wave DFT calculations were performed using the
QUANTUM ESPRESSO suite for electronic structure calcu-
lations v6.4.11,2 The SCAN exchange and correlation func-
tional3,4 was evaluated with the LIBXC 4.3.4 library5 We
employed norm-conserving, scalar-relativistic pseudopo-
tentials6 for K, Al, Si, O, H parametrized using the PBE7

functional with 9, 11, 4, 6, and 1 valence electrons, re-
spectively. Kinetic energy cutoffs of 110 and 440 Ry were
used for the wave functions and the charge density. k-point
convergence was evaluated for each configuration with en-
ergy convergence threshold 1 meV/atom. The convergence
absolute error for the self-consistent procedure was set to
10−6 Ry. For energy minimization with respect to the box or
atomic coordinates, the criterion for ending the minimiza-
tion was a change in energy smaller than 10−4 Ry in subse-
quent iterations. For surface configurations, we employed
a dipole correction based on a saw-like potential in the di-
rection perpendicular to the interface8. The mixing factor
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for self consistency was set to 0.5. All other parameters
were set to their default values in QUANTUM ESPRESSO.

2 Machine-learning model definition and training

Machine-learning interatomic potentials were constructed
using the Deep Potential methodology developed by Zhang
et al.9 as implemented in the DEEPMD-KIT v2.0.0.b210.
Below, we describe the smooth version of this frame-
work11, which is based on deep neural networks and de-
scriptors learned on the fly during the training process.

The total energy E of a configuration of N atoms with
atomic coordinates R is written as a sum over per-atom
energies Ei, i.e,

E(R) =
N

∑
i=1

Ei =
N

∑
i=1

Eαi(Ri) (1)

where Ri are the relative atomic coordinates of Ni neigh-
bors in an environment with cutoff rc around atom i, αi is
the atom type of atom i, and Eαi is an energy function for
atoms of the chemical species αi. In order to preserve the
natural symmetries of the problem, i.e., rotation and per-
mutation of atoms of the same type, we define a vector of
descriptors Di for atom i. Then, the energy of a configura-
tion can be written as,

E(R) =
N

∑
i=1

Eαi(Di). (2)

The starting point for the definition of the descriptors Di is
a continuous and differentiable switching function,

s(r) =


1
r , r < rs
1
r

{
u3
(
−6u2 +15u−10

)
+1
}
, rs ≤ r < rc

0, r ≥ rc

(3)

where u = (r− rs)/(rc − rs), and rs and rc are smooth and
hard cutoffs, respectively. Next, we construct a matrix R̃i ∈
RNi×4 of generalized coordinates with rows,

(R̃i) j =
[

s(ri j),
s(ri j)xi j

ri j
,

s(ri j)yi j
ri j

,
s(ri j)zi j

ri j

]
(4)

where (xi j,yi j,zi j) is the distance vector from atom j to
atom i, and ri j is the norm of such distance. Furthermore,
we define an embedding matrix Gi ∈ RNi×M1 with row j
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given by,
(Gi) j,∗ = gαi,α j (s(ri j)) (5)

where gαi,α j is a function that maps a scalar into M1 out-
puts, and is different for each pair of chemical species
αi and α j. We also define a secondary embedding ma-
trix G′i ∈ RNi×M2 with the first M2 < M1 columns of Gi.
With these ingredients, we now write the descriptor ma-
trix Di ∈ RM1×M2 as,

Di = (Gi)T R̃i(R̃i)
T G′i (6)

which is subsequently flatten into a vector of M1 × M2

elements and is used as input in Eq. (2). In our sim-
ulations, we used a model for five chemical species
ααα=(K,Al,Si,O,H), Eαi in Eq. (2) was represented by a neu-
ral network with three layers and 120 neurons per layer,
and gαi,α j in Eq. (5) was represented by a three-layer neu-
ral network with sizes 25, 50 and 100, respectively. Other
parameters of our model are M1 = 100, M2 = 16, rs = 3 Å,
and rc = 6 Å.

The parameters in the neural networks Eαi and gαi,α j de-
scribed above are determined through the minimization of
the following loss function,

L =
1

NB

(
∑

l∈B

wε

Nl

∣∣∣El −E(Rl)
∣∣∣2 + w f

3Nl

∥∥∥Fl −F(Rl)
∥∥∥2
)

(7)

where B is a mini-batch (i.e., a subset of the training set)
with NB atomic configurations, wε and w f are weights,
El and Fl are reference energies and forces, E(Rl) and
F(Rl) = −∇∇∇RE(Rl) are the energy and force predictions
of our model described in Eq. (2) for configuration l in
the minibatch, and Rl and Nl are the atomic coordinates
and the number of atoms in configuration l. The parame-
ters in the training procedure were as follows. We trained
the models using the Adam optimizer with learning rate
α(i) = α0λ i/τ where α0 = 0.002 is the initial learning rate,
λ = 0.97, τ = 5× 103, and i is the step number. The batch
size NB was set to one and we trained for a total number of
steps equal to 2×106. wε and w f were varied according to
wε(i) = w1

ε +(w0
ε −w1

ε)λ
i/τ and w f (i) = w1

f +(w0
f −w1

f )λ
i/τ ,

with w0
ε = 0.02, w1

ε = 1, w0
f = 1000, and w1

f = 1. This scheme
gives a higher weight to the force term in Eq. (7) at the be-
ginning of the training process, and by the end of it both
the energy and force term have equal weights. After the
training process, the model was subsequently compressed
as described in ref. 12 in order to improve the computa-
tional performance.

An example of the training curves resulting from the pro-
tocol described above is shown in Fig. 1.
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Fig. 1 Training curve for the machine learning model of the
potential energy surface of liquid water, ice, microcline feldspar,
feldspar/vacuum interfaces, and feldspar/water interfaces. The
root mean square (RMS) error in energy and forces is shown as
a function of the training steps.

3 Molecular dynamics simulations
We performed molecular dynamics simulations using
LAMMPS 13,14. The time step for the integration of the
equations of motion was 0.5 fs. We used the standard
atomic weights for the masses of all elements (K, Al, Si,
O) except H, for which we used a mass of 2 grams/mol,
in order to improve the stability of the integration of the
equations of motion. We controlled the temperature using
the stochastic velocity-rescaling thermostat15 with a relax-
ation time of 0.1 ps.

For constant pressure simulations we employed a
Parrinello-Rahman barostat with relaxation time 1 ps. For
the simulation of bulk liquid water we used an isotropic
barostat (box vector lengths coupled, and angles fixed) and
for bulk ice Ih we used a fully anisotropic barostat (box vec-
tor lengths and angles can vary independently). In both
cases we employed systems with 288 water molecules.

4 Enhanced sampling simulations
Enhanced sampling simulations were carried out using the
enhanced sampling plugin PLUMED16,17. We employed the
global Steinhardt parameter Q6 as collective variable18–20,
which we define below. We first consider the local Stein-
hardt parameter for oxygen atom i,

q6m(i) =
∑ j σ(ri j)Y6m(ri j)

∑ j σ(ri j)
(8)

where the sums run over all neighboring oxygen atoms j
closer than a distance r2 (defined below), ri j is the dis-
tance vector between i and j with norm ri j = |ri j|, Y6m are
spherical harmonic with l = 6, and −6<m< 6 is an integer.
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The switching function σ(ri j) makes q6m(i) continuous and
differentiable and is defined as,

σ(ri j) =


1 if y < 0

(y−1)2(1+2y) if 0 < y < 1

0 if y > 1

, (9)

with y = (ri j − r1)/(r2 − r1), r1 = 0.3 nm, and r2 = 0.35 nm.
The values of r1 and r2 were chosen based on the position
of the first peak of the radial distribution function, such
that σ(ri j) ≈ 1 for first neighbors and σ(ri j) ≈ 0 for more
distant neighbors.

Using q6m(i) described above, we define the global Stein-
hardt order parameter as,

Q6 =

√√√√ 4π

2l +1

l

∑
m=−l

∣∣∣∣∣ 1
N

N

∑
i=1

q6m(i)

∣∣∣∣∣
2

(10)

where l = 6, and N is the total number of oxygen atoms
for which q6m(i) was calculated. This quantity was used to
drive the formation of ice in the microcline/water interfa-
cial systems used during the active learning procedure.

In large simulation boxes, biasing Q6 leads to the forma-
tion of ice throughout the simulation box, instead of local-
ized in a region of space, as expected in nucleation phe-
nomena. For this reason, we used a variant of Q6, denoted
Qsph

6 , which localizes the effect of the collective variable in
a spherical region centered at a position r0. We define this
collective variable in the following way,

Qsph
6 =

√√√√ 4π

2l +1

l

∑
m=−l

∣∣∣∣∑N
i=1 γ(ri0)q6m(i)

∑
N
i=1 γ(ri0)

∣∣∣∣2 (11)

where ri0 = |ri − r0| is the distance from the i-th oxygen
atom to a reference position r0 (center of the sphere),
which we define as the position of a K atom at the mi-
crocline/water surface, and other symbols have the same
meaning as above. The switching function γ(ri0) was de-
fined as,

γ(ri0) = 1− tanh(ri0/r∗) (12)

with r∗ = 1.5 nm, Qsph
6 was used to drive the formation of

ice the large microcline/water interfaces described in the
main part of manuscript.

5 Initial training data

The starting point for training the machine-learning model
consisted in configurations of bulk microcline feldspar, bulk
water and ice Ih, and feldspar surfaces in contact with liq-
uid water. The procedure to obtain such configuration is
described below.

Microcline feldspar The initial configuration for micro-
cline feldspar was obtained from the American Mineralo-
gist Crystal Structure Database and corresponds to the ex-
perimental structure determined in ref. 21. Experiments
show that Al and Si can exhibit disorder in the four non-
equivalent sites T1(0), T1(m), T2(0), and T2(m). The prob-
ability of finding Si in each of these sites is in the ranges
0.23-0.52, 0.64-0.87, 0.92-0.98, and 0.92-0.98, respec-
tively21–23. We made the simplification of assigning Al to
T1(0) sites, and Si to T1(m), T2(0), and T2(m). Thus, our
microcline configurations do not show Al/Si disorder, and
the stoichiometry is exactly KAlSi3O8.

We first minimized the energy of the microcline struc-
ture with respect to the cell dimensions and the atomic
coordinates using DFT and the SCAN functional. The con-
figuration contained 52 atoms, corresponding to 4 formula
units. The lattice constants thus obtained are reported and
discussed in the Results section below. Starting from the
relaxed configuration, we perturbed randomly the atomic
coordinates and box dimensions to generate structures that
sample the potential energy surface of bulk feldspar. Each
atomic coordinate is displaced by δR= δRmax(2x−1) where
δRmax is the maximum displacement and x ∈ (0,1) is a ran-
dom number, and each box dimension L is scaled with
L = L0[1+ εL

max(2x− 1)] where L0 is the initial box dimen-
sion and εL

max is the maximum fractional change in box di-
mensions. The number of perturbed configurations and the
parameters used are summarized in Table 1.

Bulk water, ice Ih, and ice Ic In order to obtain initial
configurations for bulk water, ice Ih, and ice Ic we used tra-
jectories from our previous work24–26, which were driven
by a previously trained DeePMD model27. Information
about these simulations and the methodology for extract-
ing frames from the trajectories is given in Table 2. In total,
around 1000 configurations of liquid water, ice Ih, and ice
Ih were used. Note that in two of the simulations liquid
water and ice were sampled reversibly24. Thus, the train-
ing data includes interfacial configurations and ice config-
urations with diverse proton arrangements (proton disor-

Table 1 Parameters for the generation of microcline feldspar con-
figurations with randomly perturbed atomic coordinates and box
dimensions. δRmax is the maximum displacement of atomic coor-
dinates and εL

max is the percent change in box dimensions.

# configurations δRmax (Å) εL
max (%)

100 0.01 1
100 0.05 2
100 0.1 3
10 0.2 5
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Table 2 Configurations of bulk water, ice Ih, and ice Ic used as starting point for training the model. Each row corresponds to a different
simulation trajectory. We report the number of configurations extracted from a given trajectory, the phases that were explored, a description
of the origin of the simulation trajectory, the time interval between successive frames ∆t, the temperatures or range of temperatures of
the simulations T , the pressure P, and the number of water molecules in the simulation box NH2O.

# configurations Phases Description ∆t (ns) T (K) P (bar) NH2O

300 water, ice Ih Biased simulation24 0.25 300-350 1 96
300 water, ice Ic Biased simulation24 0.25 300-350 1 64
40 water Standard simulation25 1 260,270,280,300 1 288
200 LDL, HDL Standard simulation26 2.5 235 3200 192
122 water Biased simulation24 0.25 260-350 1 64

der). Although most simulations were performed at con-
stant pressure 1 bar, we also employed a simulation at 3200
bar which is below the liquid-liquid critical point26. We
used these simulation trajectory to provide the model with
examples of the atomic environments in the low-density
liquid (LDL) and high-density liquid (HDL)28.

Feldspar surfaces We constructed feldspar surfaces with
the (100), (010), and (001) crystallographic planes exposed
to vacuum. We identified several terminations for each sur-
face and we saturated all undercoordinated oxygen atoms
with protons. For each of the studied terminations, we min-
imized the energy with respect to the atomic coordinates.
Then we generated ten perturbed configurations for each
of the terminations and the δRmax-εL

max parameters in Table
1. The surface configurations contained between 58 and
128 atoms.

6 Active learning

With the data described above, we trained an initial en-
semble of four models, with different initialization random
seeds. The models were subsequently improved with an
active learning procedure. This approach is iterative and
each iteration k can be described as follows,

1. use the models obtained in iteration k−1 to run molec-
ular dynamics simulations. The simulations are de-
scribed in detail below.

2. extract high-error configurations from the resulting
trajectories. The error εi in the i-th force component is
calculated as proposed in ref. 29, i.e, ε2

i = ⟨| fi − f̄i|2⟩,
where f̄i = ⟨ fi⟩ and the average ⟨·⟩ is taken over the
ensemble of models. The errors were evaluated every
0.25 ps and high-error configurations were defined by
a maximum error in the forces ε = max

i
εi > 0.2 eV/Å.

3. compute energies and forces of the extracted configu-
rations via DFT calculations (see section on electronic-
structure calculations for further details).

4. train a new set of four models which correspond to
iteration k. The data for the models in iteration k in-
cludes all or a subset of the data obtained in iterations
i = 1, ...,k.

This process was repeated until the convergence criterion
max

i
εi < 0.2 eV/Å was met. Around 20 iterations were

needed to reach the desired accuracy.
In Fig. 1 we show the training curves for the final ma-

chine learning model of the ab initio potential energy sur-
face obtained in this work.

Feldspar/water and feldspar/ice interfaces Configura-
tions for the active learning process were generated us-
ing molecular dynamics simulations of the water/feldspar
interface at constant volume, and constant temperature
equal to 300 K (7 K of supercooling). We used the most
stable terminations for the (100), (010), and (001) surfaces
of feldspar. The configurations contained 544, 900, and
664 atoms, respectively. Since the water to ice transition is
a rare event in the time scale accessible to a molecular sim-
ulation, we used advanced sampling to observe this phase
transformation at feldspar surfaces during our simulations.
This was achieved through a harmonic bias potential,

V (Q6(R)) =
k
2
(
Q6(R)−Qctr

6 (t)
)2 (13)

where k = 105 kJ/mol, Q6(R) is the Steinhardt parameter
defined above, and Qctr

6 (t) = Q0
6 +(Q f

6 −Q0
6)t/ttot is the cen-

ter of the harmonic bias which changes linearly with time
t from initial value Q0

6 to final value Q f
6 over the total sim-

ulation time ttot = 1 ns. Q0
6 ≈ 0 and Q f

6 = 0.55 are values of
Q6(R) compatible with liquid water and ice, respectively.

7 Generalization errors
We tested the reliability of our force field by analyzing its
ability to reproduce DFT energies and forces of configura-
tions not provided in the training set. Using our force field
we performed simulations of the (100), (010), and (001) mi-
crocline/water interface as described in Sec. 6. The width
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Fig. 2 Analysis of the accuracy of the trained model for bulk-like water (blue), a monolayer of water (orange), and a single water molecule
(green) at the (001) surface of microcline (termination b). We show the distribution of errors in the energy EML −EDFT and the forces
fML − fDFT. The errors in energy and forces were fitted to a Gaussian and Lorentzian probability density function, respectively, and the
corresponding curves are shown with a dashed line. Parity plots EML vs. EDFT and fML vs. fDFT are also shown. Representative atomistic
configurations are shown for bulk-like water, a monolayer of water, and a single water molecule at the (001) surface of microcline.

of the water layer above the microcline surfaces is around
15 Å, sufficient to provide bulk-like atomic environments
around water molecules. This choice of configurations was
motivated by our goal to study heterogeneous ice nucle-
ation in immersion mode. From each 1 ns simulation we
extracted configurations every 10 ps for a total of 300 con-
figurations for the three interfaces. The same simulation
setup was used during the active-learning-based training
process, and thus these configurations contain atomic en-
vironments similar to others already seen during the train-
ing of the force field. In Fig. 2 we analyze the errors of our
force field compared to direct DFT calculations in configu-
rations of bulk-like water at microcline surfaces. The errors
were εRMS

E = 0.60 meV/atom and εRMS
f = 107 meV/Å, very

similar to the errors made on configurations present in the
training set.

We also tested the ability of our force field to extrapolate
to environments somewhat different to the ones present
in the training set. For this purpose, we prepared a con-
figuration of the (001) microcline surface (termination b)
with a monolayer of water, and another configuration with
a single water molecule at the surface (see Fig. 2 for rep-
resentative atomistic configurations). We then performed
1 ns simulations at 300 K for each of these configurations
and extracted configurations every 10 ps. In total, we ex-
tracted 100 configurations both for the monolayer of water

and the single water molecule at the surface. The atomic
environments at these surfaces were not represented in the
training set. The errors in energies and forces for these con-
figurations with respect to DFT results are studied in Fig. 2
using error distributions and parity plots. Both for the
monolayer of water and the single water molecule at the
surface, the distribution of per-atom energy errors is cen-
tered at around 1.7 meV/atom, implying a small systematic
deviation of the energy predicted by the model with respect
to DFT. The RMS error in energy was εRMS

E = 1.9 meV/atom
for the monolayer of water and εRMS

E = 1.5 meV/atom for
the single water molecule. Both values are higher than the
error εRMS

E = 0.60 meV/atom found for bulk-like water at
microcline interfaces. These results suggest that the force
field is still valid for this type of configuration, although
it looses some accuracy in the energy prediction. On the
other hand, the prediction of the forces retains a relatively
high-accuracy even for configurations not seen in the train-
ing set. Both for the monolayer of water and the single wa-
ter molecule at the surface, the force error distribution is
centered at the origin and the parity plots show excellent
correlation between our force field and DFT predictions.
The RMS error in forces was εRMS

E = 126 meV/Å for the
monolayer of water and εRMS

E = 123 meV/Å for the single
water molecule. These errors are only marginally higher
than the error εRMS

f = 107 meV/Å of the force field for bulk-
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like water at microcline surfaces. These results suggest that
the dynamics created by the force field are reliable, also for
this type of configurations not present in the training set.
An accurate description of single water molecules as well
as a monolayer of water at microcline is important to study
heterogeneous ice nucleation in deposition mode (from the
vapor phase). Although training a force field to study nu-
cleation in deposition mode was not the objective of our
work, the results show that the model extrapolates rela-
tively well to such conditions.

8 Calculation of surface energies

We evaluated the zero-temperature stability of different
surfaces and terminations as follows. We consider slab con-
figurations with two identical surface terminations which
can be described as N f unit formulas of bulk feldspar plus
Nw water molecules,

N f KAlSi3O8(bulk)+Nw H2O(g)→

KN f AlN f Si3N f O8N f +NwH2Nw(slab) (14)

The potential energy of the slab configurations can be writ-
ten as,

Eslab = N f Ebulk
feldspar +NwEgas

H2O +2Aγ (15)

where Ebulk
feldspar is the potential energy of bulk feldspar, Egas

H2O
is the potential energy of an isolated water molecule, A is
the surface area, and γ is the surface energy. Eq. (15) is
only valid in the limit N f → ∞, when the slab is infinitely
thick. As proposed by Fiorentini and Methfessel30, we first
compute Eslab for slabs of different thicknesses, same area
A, and same number of water molecules Nw at the surfaces.
Then, we calculate Ebulk

feldspar as the slope of a linear fit of
the Eslab −NwEgas

H2O vs N f data. With the value of Ebulk
feldspar

thus calculated, the surface energy can be obtained via the
definition,

γ = lim
N f →∞

1
2A

(
Eslab −NwEgas

H2O −N f Ebulk
feldspar

)
(16)

Note that according to this equation, the surface energy
can be lowered either by reducing Eslab or by increasing the
number of dissociated water molecules Nw at the surface.

The surface energy vs. slab thickness is shown in Fig. 3.

9 Formation of ice cluster at the microcline/water
interface

The formation of ice at microcline/water interfaces was
driven by the following bias potential,

V (Qsph
6 (R)) =

k
2

(
Qsph

6 (R)−Qctr
6 (t)

)2
(17)
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Fig. 3 Zero-temperature surface energy of different fully-
hydroxylated terminations of the (100), (010), and (001) surfaces
of microcline feldspar vs slab thickness. Fits of a constant function
to the data are shown with lines. The width of the semi-transparent
regions around each line are one-sigma errors of the fitting proce-
dure.

where k = 106 kJ/mol, Qsph
6 (R) is the Steinhardt parame-

ter localized within a sphere (see definition above), and
Qctr

6 (t) = Q0
6 +(Q f

6 −Q0
6)t/ttot is the center of the harmonic

bias which changes linearly with time t from initial value
Q0

6 to final value Q f
6 over the total simulation time ttot = 10

ns. Q0
6 ≈ 0 and Q f

6 = 0.4 are values of Qsph
6 (R) compatible

with liquid water and ice, respectively.
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