
Collective modes and quantum effects in two-dimensional nanofluidic channels
Electronic Supplementary Information (ESI)

Baptiste Coquinot,a,b,c Maximilian Becker,d Roland R. Netz,d Lydéric Bocqueta and Nikita Kavokineb,c∗
a Laboratoire de Physique de l’École Normale Supérieure,

ENS, Université PSL, CNRS, Sorbonne Université,
Université Paris Cité, 24 rue Lhomond, 75005 Paris, France.
b Department of Molecular Spectroscopy, Max Planck Institute

for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
c Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, NY 10010, USA.

d Fachbereich Physik, Freie Universitat Berlin, Arnimallee 14, 14195 Berlin, Germany.

CONTENTS

I. Absence of overscreening with the confined
response functions 1

II. Electrostatic interaction confinement 1
A. Model and solid’s static response function 1
B. Interaction confinement for an ion and ion-ion

electrostatic interaction 3
C. Interaction confinement for a dipole and

dipole-dipole electrostatic interaction 3

III. Water response functions and simulations 4
A. Numerical methods for water simulations 4
B. Fluctuation-dissipation theorem 4
C. Evaluation of the time correlation function 4
D. Momentum dependence and position of the

interface 5

References 5

I. ABSENCE OF OVERSCREENING WITH THE
CONFINED RESPONSE FUNCTIONS

Since the real part of the surface response functions
consists of positive numbers smaller than one, Eq. (16) of
the main text allows the antisymmetric response function
to become larger than 1. This is in particular the case at
zero frequency when the imaginary parts vanish.

Physically, it is easy to understand that the symmet-
ric response function should be smaller than the surface
response function while its antisymmetric counterpart
should be larger. Indeed, let us focus on the top solid,
which responds to the sum of the (positive) external po-
tential and the potential induced by the bottom solid.
In the symmetric case the bottom solid also responds to
a positive external potential and then induces a nega-
tive potential which is damped exponentially. However,
the surviving part reaching the top solid is still nega-
tive and then reduces the effective external potential to

∗ Contact: nikita.kavokine@mpip-mainz.mpg.de.

which the top solid responds. The symmetric response
is then smaller than the surface response because the ex-
ternal potential is screened by the bottom solid. On the
contrary, in the antisymmetric case, the external poten-
tial is negative on the bottom solid which then responds
by inducing a positive field. By the same process, the
top solid now sees an effective external potential which is
larger, generating a larger response. The antisymmetric
response should then be larger than the surface response.

However, this cannot generate overscreening. Indeed,
even if the antisymmetric response function is larger than
1, one should remember that the induced potential is not
of the form of the external potential but of its "con-
jugate". The antisymmetric inner weight function is
smaller than its outer counterpart: this solves the ap-
parent problem. Let us formalise this intuition by com-
puting the ratio of the induced field by the external field
between the interfaces:

−φind (z)
φext (z)

= gxe
F x
i (z)

F x
o (z)

=
goe
−qh

1 + ηgoe−qh
|eqz + ηe−qz|

e−q|z|
. (1)

where η = ±1 depending on whether we consider the
symmetric or antisymmetric case. This ratio is maximal
for z = ±h/2 where it reaches

−φind (±h/2)
φext (±h/2)

= go
1 + ηe−qh

1 + ηgoe−qh
= 1− 1− go

1 + ηgoe−qh
≤ 1.

(2)
Therefore, the induced potential is always smaller than
the external potential, even when the confined response
function is larger than 1. There is no overscreening.

As a consequence, the water static confined response
function must fulfill the inequality gxw ≤ 1 + ηe−qh. In
particular, the static antisymmetric response function
goes to zero at q → 0. For comparison, its surface
response function has the limit gw(ω = 0, q → 0) →
(ε− 1)/(ε+ 1) ≈ 0.98 (see [1]).

II. ELECTROSTATIC INTERACTION
CONFINEMENT

A. Model and solid’s static response function

In this section, we focus on how confinement will mod-
ify the electrostatic interactions between charges inside a
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FIG. 1. a) Interaction confinement of an ion in the center of the channel: the generated electric field is partly confined in the
channel by the surrounding solid which develop counter-charges (pictured in dark brown). This leads to a modified ion-ion
interactions. b) Interaction confinement of an electrostatic dipole in the center of the channel: the generated electric field is
partly confined in the channel by the surrounding solid which develop counter-charges (pictured in dark brown). This leads to
a modified dipole-dipole interactions. c) Ion-ion interaction energy shift (normalised by the bulk interaction energy) for two
ions at a distance ρ in bulk (black dashed line) and in a channel of confinement h = 2 nm. Different models of solid are used.
d) Dipole-dipole interaction energy shift (normalised by the bulk interaction energy) for two dipoles in the z-direction at a
distance ρ in bulk (black dashed line) and in a channel of confinement h = 2 nm. Different models of solid are used.

Model Geometry Weight function

Single interface Half-space F 0(q, z) = e−q|z|

Confined Symmetric Antisymmetric

Inside F s
i (q, z) =

√
2 cosh(qz)e−qh/2 F a

i (q, z) =
√
2 sinh(qz)e−qh/2

Outside F s
o(q, z) =

1√
2
e−q(|z|−h/2) F a

o (q, z) =
sign(z)√

2
e−q(|z|−h/2)

TABLE I. Weight functions used in the definitions of the surface and confined response functions (Eq. (??) and (??)).

channel. While our formalism allows us to treat the elec-
tric interactions of any static or dynamic distribution of
charge, we restrict here to basic cases. We consider ei-
ther an ion or a dipole in the center of the channel, as
represented in Fig. 1a-b, to deduce the ion-ion and the
dipole-dipole electrostatic interactions in presence of con-
finement.

To apply our theory and to compare with the existing
literature, we need a simple model of the solid’ surface
response function. For this, we use the work of Kavokine

et al. [2]. To start, let us duplicate their eye-opening
derivation of the surface response function of an insulator
of static dielectric constant εm ≈ 2, taking into account
the presence of water of static dielectric constant εw ≈ 80
at the interface.

We consider an external electric potential φext(q, z) =
φ0ext(q)eqz applied on the solid in z < 0. On the solid
area the total electric potential is denoted φm(q, z) =
φ0m(q)eqz and the solid generates an induced electric po-
tential φind(q, z) = φ0m(q)e−qz on the area z > 0. The
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boundary conditions at z = 0 are the continuity of both
the total electric potential φ and the electric displacement
field D = −ε∇φ, leading to

φ0ext + φ0ind = φ0m (3)
εw
(
φ0ext − φ0ind

)
= εmφ

0
m. (4)

Finally, we obtain the surface response function:

g0o(q) =
φ0ind(q)
φ0ext(q)

=
εm − εw
εm + εw

(5)

This derivation is valid for an insulator, while the di-
electric constant of the solid depends on the momen-
tum q in general. A generalisation of this formula exists
for a Thomas-Fermi model of solid, parametrised with a
Thomas-Fermi wavelength qTF [2]:

g0o(q) =
εmfTF(q)− εw
εmfTF(q) + εw

, fTF(q) =

√
1 +

1

εm

(
qTF

q

)2

.

(6)
The case qTF = 0 corresponds to an insulator. The case
qTF →∞, that is g0o(q)→ 1, corresponds to a metal. Let
us highlight that g0m is negative at large wavelength and
positive at small wavelength. The wavelength of the tran-
sition depends on the Thomas-Fermi wavelength. When
the surface response function is negative, which is ex-
pected to happen at small distances, the effect of the
boundary solids is to confine the electric field inside the
channel: this is interaction confinement. At larger dis-
tances, the surface response function becomes ultimately
positive: the electric field is no longer confined.

B. Interaction confinement for an ion and ion-ion
electrostatic interaction

Let us start with the case of a static ion of charge e
(see Fig. 1a). Such a charge generates a potential

φext(ρ, z) =

∫
dq

(2π)2
e2

2εq

√
2F s

o(q, z)e
iρ·q−qh/2 (7)

where we have introduced a Fourier decomposition into
independent modes. Taking into account the effect of the
material, the total potential in the inner space now writes

φ(q, z) =
√
2e2

2εq
[F s

o(q, z)− gso(q)F s
i (q, z)] e

−qh/2 (8)

In particular, in the center of the channel, that is at z =
0, we obtain using Eq. (17) of the main text:

φ(q, z = 0) =
e2

2εq

[
1− 2g0o(q)e−qh

1 + g0o(q)e−qh

]
(9)

consistently with the result of Kavokine et al. [2]. An
ion in the center of the channel is a symmetric distribu-
tion of charge and then its potential is corrected by the

symmetric response function of the outer medium. The
effect of the medium is to screen the charge and then to
confine the electric potential, as pictured in Fig. 1a.

Considering another ion of charge e in the center of the
channel at a distance ρ, the ion-ion electrostatic interac-
tion is

Eii = φ(ρ, z = 0) =
e2

2ε

∫ ∞
0

dq
2π
J0(qρ)

[
1− 2g0o(q)e

−qh

1 + g0o(q)e
−qh

]
(10)

where we have used isotropy and introduced the Bessel
function of the first kind J0. The first term provides te
bulk interaction energy

Ebulkii (ρ) =
e2

4πε0εwρ
(11)

while the second term provides a correction due to con-
finement. This correction can be computed numerically
using Eq. (6). The resulting ion-ion interaction (nor-
malised by Ebulkii (ρ)) is plotted in Fig. 1c. Consistently
with [2], we find that the interaction is reduced at large
distance and increased at small distance for a generic
solid.

C. Interaction confinement for a dipole and
dipole-dipole electrostatic interaction

Let us now turn to an electrostatic dipole d oriented
in the z direction (see Fig. 1b). Such a dipole generates
a potential

φext(ρ, z) = −
∫

dq
(2π)2

e2d

2ε

√
2F a

o (q, z)e
iρ·q−qh/2 (12)

where we have introduced a Fourier decomposition into
independent modes. Taking into account the effect of the
material, the total potential in the inner space now writes

φ(q, z) = −
√
2e2d

2ε
[F a

o (q, z)− gao(q)F a
i (q, z)] e

−qh/2

(13)
In particular, in the center of the channel, using Eq. (17)
of the main text, the electric field writes

E(q, z = 0) = −e
2d

2ε
qd
[
1 +

2g0o(q)e−qh

1− g0o(q)e−qh

]
(14)

An electrostatic dipole in the center of the channel is an
antisymmetric distribution of charge and then its poten-
tial is corrected by the antisymmetric response function
of the outer medium. Here again, the effect of the outer
medium is to confine the electric potential, as pictured
in Fig. 1b.

Considering another dipole of same moment d in the
center of the channel at a distance ρ, the dipole-dipole
electrostatic interaction is
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Edd = −d ·E(ρ, z = 0) =
e2d2

2ε

∫ ∞
0

dq
2π
q2J0(qρ)

[
1 +

2g0o(q)e
−qh

1− g0o(q)e−qh

]
(15)

The first term provides te bulk interaction energy

Ebulkdd (ρ) =
e2d2

4πε0εwρ3
(16)

while the second term provides a correction due to con-
finement. This correction can be computed numerically
using Eq. (6). The resulting dipole-dipole interaction
(normalised by Ebulkdd (ρ)) is plotted in Fig. 1d. After
a reduction of the interaction at small distances com-
pared with the confinement h, the interaction energy is
increased by a factor ≈ 2.6 independent on the model of
solid.

To conclude this section, we have derived the correc-
tion of confinement to the electric potential. This ap-
proach generalises the results of interaction confinement
[2] to the generic distribution of charge, or equivalently
to a generic external potential, which we can decompose
into a symmetric and an antisymmetric parts.

III. WATER RESPONSE FUNCTIONS AND
SIMULATIONS

A. Numerical methods for water simulations

We have carried out both force-field (FF) and ab ini-
tio density functional theory-based (DFT) molecular dy-
namics (MD) simulations of water confined between two
frozen graphene sheets for various separations h between
the graphene sheets. For all systems, the number of water
molecules confined between graphene sheets is held con-
stant and chosen such as to reproduce the chemical po-
tential of bulk water from SPC/E force field simulations
according to [3]. FF-MD simulations are performed us-
ing GROMACS 2020 using the SPC/E water model and
GROMOS 53A6 parameters for carbon atoms [4, 5]. Sim-
ulations are performed in the NVT ensemble using the
CSVR thermostat at 300 K. We use a 2 fs time step and
truncate Lennard-Jones interactions at 9 Å. Electrostat-
ics employ a real-space cut-off at 0.9 nm while long-range
interactions are handled with the particle mesh Ewald
method. The considered systems have lateral dimensions
of 42.6 Å × 44.3 Å and contain 210, 1872 and 3489 wa-
ter molecules at h =7 Å, 34 Å and 60 Ågraphene sheet
separations, respectively. After 1 ns of equilibration, we
perform production runs of 20 ns.

DFT-MD simulations are carried out with the CP2K
6.1 software which performs Born-Oppenheimer MD [6].
Electronic structures are calculated at every time step
based on the BLYP exchange correlation functional with
Grimme-D3 dispersion correction [7], while core electrons
are represented by GTH pseudo potentials and valence
electrons are expanded in the DZVP-SR-MOLOPT basis

set using a plane wave cutoff of 400 Ry [8, 9]. DFT-
MD simulations are performed in the NVT ensemble at
300K with a 0.5 fs time step using the CSVR thermo-
stat. The simulated systems have lateral dimensions
of 29.82 Å × 27.05 Å and contain 90 and 420 water
molecules for graphene sheet separations of h =7 and
17.8 Å, respectively. After preequilibration in FF-MD,
DFT-simulations are equilibrated for another 5 ps fol-
lowed by production runs of 70 ps.

B. Fluctuation-dissipation theorem

Our goal is to compute the surface response function
defined in Eq. (8) of the main text as

g(q, ω) = − e2

2ε0q

∫
dzdz′ F (q, z)χ(z, z′,q, ω)F (q, z′).

(17)
Using the fluctuation-dissipation theorem we then deduce

Im [gw[F ](q, ω)] =
e2

4ε0q

ω

T
S[F ](q, ω) (18)

where

S[F ](q, ω) =
∫ ∞
−∞
〈δnw[F ](q, t)δnw[F ](−q, t)〉eiωtdt

(19)
is a modified structure factor with en effective density

nw[F ](q, t) =
∫

drnw(r, t)F (q, z)e−iq·r. (20)

The density nw(r, t) is given by the simulation trajectory.

C. Evaluation of the time correlation function

For each time step, we first compute the Fourier-
transformed charge density. From MD simulation, we
have access to the center of each atom and use a par-
tial charge Z = δ = 0.41e for the hydrogen atoms and
Z = −2δ for the oxygen atoms. The density is then

n(q) =
∑
j

ZjF (q, zj)e
iqxx+iqyy (21)

where F is the weight function and qx, qy are multiples of
2π/Lx (2π/Ly respectively). We make this computation
for Nt = 105 time steps, and then obtain the fluctuating
part of the density by subtracting the average

δn(q, t) = n(q, t)− 〈n(q, t)〉t (22)
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where 〈A(t)〉t = 1
Nt

∑
tA(t).

We then carry out a fast Fourier transform (FFT):

δn(q, ω) = FFT[n(q, t)]t (23)

and only keep the positive frequencies. The response
function is then computed as

Im [g(q, ω)] =
e2ω

4ε0qTA
|δn(q, ω)|2 dt

Nt
. (24)

where dt is the length of the time step. In practice, g
only depends on the norm q. Finally, the spectra are
smoothed by a Gaussian smoothing of width 0.2 meV for
the FF simulations and 0.5 meV for DFT simulations.

D. Momentum dependence and position of the
interface

The limited size of the simulation box does not al-
low us to access all momenta necessary for the com-
putation of fluctuation-induced effects (typically below
1 Å−1). Therefore, we restrict ourselves to one momen-
tum compatible with the size of the box and extrapo-
late the response functions to lower momenta. We use
q0 = 0.67 Å−1 for FF simulations and q0 = 1 Å−1 for
DFT simulations.

From the simulations carried out with a large box in
[1], we know that the non-confined water surface response
function has only a weak momentum dependence: we
therefore approximate the surface response function at
all momenta by the one computed at q0. For the con-
fined response functions, however, the form of the weight

functions imply that the static (ω = 0) response fulfills
gxw ≤ 1 + ηe−qh, where η = ±1 for the symmetric (an-
tisymmetric) component (see. ESI.1). In particular, the
static antisymmetric response function goes to zero at
q → 0. We thus infer the momentum dependence of the
confined response function according to

gxw(q, ω) =
1 + ηe−qh

1 + ηe−q0h
gxw(q0, ω). (25)

In practice, in the evaluation of friction coefficients, this
procedure makes only a 1% difference compared to the
assumption of no momentum dependence. Formally,
however, such a procedure allows us to obtain well-
behaved response functions that produce no unphysical
overscreening.

The evaluation of the response functions requires to
precisely define the positions of the interfaces at z =
±h/2. In ref. [1], a procedure for positioning the inter-
face based on imposing the compressibility sum rule for
the surface response function was proposed. This pro-
cedure no longer formally holds in a confined geometry,
but we expect the position of the interface to not be
significantly affected by confinement. With our simula-
tions at weakest confinement (FF at 60 Å and DFT at
34 Å) and following the procedure of ref. [1], we an effec-
tive distance between the plane of the carbon atoms and
the water surface d ≈ 1.4 Å, which is compatible with
d = 1.3 Åfound in [1]. We then adopt the prescription
d = 1.4 Å for the simulations under confinement.
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