Electronic Supplementary Material (ESI) for Faraday Discussions. This journal is © The Royal Society of Chemistry 2023

Properties of aqueous electrolyte solutions at carbon electrodes: effects of concentration and surface charge on solution structure, ion clustering and thermodynamics in the electric double layer

Supporting Information

Aaron R. Finney and Matteo Salvalaglio

Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom

E-mail: a.finney@ucl.ac.uk; m.salvalaglio@ucl.ac.uk

Additional Figures

Figure S1: Water atom densities, ρ , in the steady state determined as a function of distance from the graphite electrode, Δx . The atom type is indicated on each panel. Colours blue \rightarrow red indicate increasing graphite surface charge densities from $|\sigma| = 0 \rightarrow 0.77~e~{\rm nm}^{-2}$, with data on the left and right of each panel pertaining to simulations with positive and negative applied surface charges, respectively.

Figure S2: Water atom and ion solution densities, ρ , in the steady state determined as a function of distance from the graphite electrode, Δx , where the target bulk ion concentration was 1 M. The atom type is indicated on each panel. Colours blue—red indicate increasing graphite surface charge densities from $|\sigma| = 0 \rightarrow 0.77~e~{\rm nm}^{-2}$, with data on the left and right of each panel pertaining to simulations with positive and negative applied surface charges, respectively.

Figure S3: Water atom and ion solution densities, ρ , in the steady state determined as a function of distance from the graphite electrode, Δx , where the target bulk ion concentration was 5 M. The atom type is indicated on each panel. Colours blue—red indicate increasing graphite surface charge densities from $|\sigma| = 0 \rightarrow 0.77~e~{\rm nm}^{-2}$, with data on the left and right of each panel pertaining to simulations with positive and negative applied surface charges, respectively.

Figure S4: Water atom and ion solution densities, ρ , in the steady state determined as a function of distance from the graphite electrode, Δx , where the target bulk ion concentration was 10 M. The atom type is indicated on each panel. Colours blue—red indicate increasing graphite surface charge densities from $|\sigma| = 0 \rightarrow 0.77~e~{\rm nm}^{-2}$, with data on the left and right of each panel pertaining to simulations with positive and negative applied surface charges, respectively.

Figure S5: Change in the atom densities $(\Delta \rho)$ as a function of distance from the graphite electrode according to the applied surface charge density $(|\sigma| = 0 \rightarrow 0.77~e~{\rm nm}^{-2}$ as indicated by the blue—red colour scale). Atom types are provided on the left, and target bulk concentrations are indicated the top of the grid.

Figure S6: A) Order parameter analysis for water in $C\mu MD$ simulations of 5 M NaCl(aq) at charged graphite with surface charge density, $|\sigma| = 0.77 e \text{ nm}^{-2}$. The probability density for q3 (i), local q3 (ii; lq3), local average q3 (iii; $\overline{q3}$), approximate pair entropy (iv; S_2) and local average approximate pair entropy (v; $\overline{S_2}$) are provided. The distributions for water in bulk liquid, vitreous (liquid water crash cooled to 100 K), hexagonal ice (ice I_h) and cubic ice (I_c) are also provided. B) Probability densities for $\overline{S_2}$ in slices of the cell x axis. The bulk liquid water and ice I_h distributions are provided on the y-axis.

Figure S7: H-bonds for bulk liquid water (ℓ) , ice I_h , and water in the bulk and EDL regions of $C\mu MD$ simulations of graphite in contact with NaCl(aq) where the surface charge density was $|\sigma| = 0.77 \, e \, \text{nm}^{-2}$. d_H and θ_H refer to the H-bond D—H··· A distance (A and D) and angle (B and E), respectively, where D, H and A refer to the oxygen donor, bonded hydrogen and oxygen acceptor, respectively. The number of H-bond donors per water molecule is provided in C, and F. A-C are for cases where the concentration was 0 M, while D-E provide the results from simulations at 10 M.

Figure S8: Contributions to the electrochemical potential of ions $(\Delta \tilde{\mu})$ in solution at graphite with $\sigma = +0.77~e~{\rm nm}^{-2}$. $\Delta \tilde{\mu}^I = RT \left[\ln m_{Na}(x) m_{Cl}(x) \right]; \ \Delta \tilde{\mu}^C = (2\omega - 1) F \psi(x); \ {\rm and}, \ \Delta \tilde{\mu}^E = RT \ln \left[\gamma_{ion}(m_{Na}(x)) \gamma_{ion}(m_{Cl}(x)) \right].$

Figure S9: Contributions to $(\Delta W_{wat}(x))$ in 1 M NaCl(aq) solution at graphite with $\sigma = +0.77e \text{ nm}^{-2}$. See equation 14 in the main paper for details.

Figure S10: Contributions to $(\Delta W_{wat}(x))$ in 10 M NaCl(aq) solution at graphite with $\sigma = +0.77e~{\rm nm}^{-2}$. See equation 14 in the main paper for details.