Supporting Information

A Lithium-Air Battery and Gas Handling System Demonstrator

Jack W. Jordan,^{a,b} Ganesh Vailaya,^a Conrad Holc,^a Max Jenkins,^{b,c} Rory C. McNulty,^{a,b} Constantin Puscalau,^d Begum Tokay, ^d Andrea Laybourn, ^d Xiangwen Gao,^c Darren A. Walsh,^{a,b} Graham N. Newton,^{a,b} Peter G. Bruce,^{b, c} Lee R. Johnson^{a,b}*

 ^a Nottingham Applied Materials and Interfaces Group, School of Chemistry, University of Nottingham, Nottingham, NG7 2TU, UK
 ^b The Faraday Institution, Harwell Campus, Didcot, OX11 0RA, UK

^c Department of Materials, Parks Road, University of Oxford, Oxford, OX1 3PH, UK

^d Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK

Experimental

Materials

Tetraethylene glycol dimethyl ether (tetraglyme, ≥99%, Sigma-Aldrich) was dried for 3 days freshly activated molecular sieves (type 4 Å, Aldrich) before use. Lithium over bis(trifluoromethane)sulfonimide (LiTFSI, ≥99.95%, Sigma-Aldrich) was dried at 120 °C overnight before use. Di-tert-butyl dibenzoquinone (DBBQ, 98%, Sigma-Aldrich) was dried under vacuum for 3 days before use. Karl-fischer titrations were performed to ensure water content of the electrolyte was <10 ppm. Compressed gases were all purchased from BOC. Activated carbon for the scrubber was purchased from Fluval. Molecular sieves (13X, 4-8 mesh) were purchased from Sigma-Aldrich. Cell components (lithium iron phosphate electrodes, glass fibre separators, Super P carbon electrodes and stainless-steel mesh) were dried at 120 °C before use. Cell housing components (current collector, PTFE gasket, flow field plate, bolts and screws) were dried in a vacuum oven at 70 °C for at least 3 hours before atmospheric transfer to the glovebox whilst hot. All materials and cell components were dried as described and stored in an Ar-filled glovebox (O_2 and $H_2O < 0.1$ ppm). All cells were configured in the Ar-filled glovebox (O_2 and $H_2O < 0.1$ ppm). Materials used for the construction of the gas handling rig were purchased from Swagelok (1/4" tubing, taps, back pressure regulator, fittings) Sigma-Aldrich (stainless steel gas bubbler) Omega Engineering (mass flow controllers, pressure transducers) and RS (CO₂/humidity sensor). The heated scrubber was made in-house by our workshops. The flow field plate for the cell was purchased from Fuel Cell Store.

Flow Cell Measurements

Flow cells were assembled with 22 x 22 mm square lithium iron phosphate ($Li_{1-x}FePO_4$, LFP) negative electrodes, square 22 x 22 mm glass fibre separators, square 20 x 20 mm SuperP (SuperP:PTFE 80:20 wt%) electrode and square 20 x 20 mm stainless-steel mesh current collectors. Free standing SuperP electrodes were made by mixing SuperP and an aqueous PTFE suspension together (10 wt%) with isopropyl alcohol (IPA). IPA was added until a putty like consistency was achieved, after which the putty was subjected to calendaring from 1500 µm down to 350 µm in 100 µm increments. 600 µL of electrolyte (1M LiTFSI in tetraglyme, 50 mM DBBQ) was added to the cell. Eight bolts with wingnuts tightened to finger tightness were used to seal the cell and ensure sufficient stack pressure for discharge. Cells were discharged on a BioLogic SP-50 potentiostat and were allowed a 4 hour open circuit period at the same gas flowrate used for discharge before applying the relevant current density.

Li₂O₂ yield measurements

The positive electrodes were extracted and washed with dimethoxyethane (DME). Yield measurements were performed using the previous reported method.¹ The were discharged at 20 °C at a current density of 0.5 mA cm⁻² to a capacity of 10 mAh (100% O₂) or 5 mAh (20% O₂/air). The discharged electrodes and separators were added to a vial containing a 3 mL of H₂O. A ten times dilution was then carried out (five for 20% O₂/air). The resulting solution was added to an equal volume of TiOSO₄ (2 wt.%) in 1 M H₂SO₄ (H₂O). The λ_{max} at 405 nm (Ocean Optics USB2000+ fiber optic spectrometer) were compared to a calibration curve, which was obtained by using known standards of H₂O₂.

SEM Imaging

The positive electrodes were extracted and washed with dimethoxyethane (DME) before airfree transfer to the scanning electron microscope (SEM). Imaging was performed on a FEI Quanta200 3D FIB-SEM (FEI, United States of America) and a Zeiss Crossbeam550 FIB-SEM (Carl Zeiss, Germany) at accelerating voltages of 5.00 kV.

FT-IR

Fourier transform infra-red (FTIR) spectra were recorded on a Bruker Alpha II spectrometer with a Pt ATR module in a N₂-filled glovebox, without further manipulation of the dried electrode.

Calculation of Normalised Flowrate

Normalised flowrates based on oxygen consumption were calculated as follows:

 $\frac{Q_{min}}{nF} = mol min^{-1}$

Where Q_{min} is the charged passed per minute, n is the number of electrons and F is the Faraday constant. The ideal gas equation was then used to calculate volumes, with 1000 mbar assumed pressure.

Figure S1. Discharge profiles of cells discharged in a static configuration (Swagelok, 177 μ L cm⁻² electrolyte) and of the demonstrator cell under a flow of 100% O₂ (0.50 ml min⁻¹). For both cells the electrolyte was 1M LiTFSI dissolved in tetraglyme with 50 mM DBBQ.

Table S1. %Li₂O₂ yields of cells run under the flow of different gas compositions, discharged at a current density of 0.5 mA cm⁻².

Cell	%Li ₂ O ₂ Yield
100% O ₂	82
20% O ₂	62
Compressed Air	52
Scrubbed Air	48

Flow Rate / mL min ⁻¹	100% O ₂ / V vs. Li/Li ⁺	20% O₂ / V vs. Li/Li⁺	Air / V vs. Li/Li⁺
0.05	2.48		
0.1	2.54	2.47	2.54
0.25	2.54	2.57	2.57
0.5	2.62	2.54	2.56
0.75		2.55	2.58
2.5		2.57	2.57
5		2.59	2.48

Table S2. Discharge voltages of the cells from Figure 3. Voltages taken at 50% of discharge.

Table S3. Normalised flow rates based on the applied current densities and oxygen consumption with the Li-air demonstrator.

	100% O ₂ / mL min ⁻¹	20% O ₂ / mL min ⁻¹	Air (21% O₂) / mL min ⁻¹
0.1 mA cm ⁻² (0.4 mA)	0.003	0.015	0.014
0.5 mA cm⁻² (2 mA)	0.015	0.075	0.071

Performance		Cathode	
Specific capacity (mAh g ⁻¹)	352	Volume fractions	
Specific energy (Wh kg ⁻¹)	934	Carbon (%)	20.4
Pack Specific energy (Wh kg ⁻¹)	587	Electrolyte (%)	27.5
System specific energy (Wh kg ⁻¹)	454	Binder (%)	13.6
oystem specific energy (whikg)		Li_2O_2 (%)	38.5
Volumetric capacity – (mAh cm-3)	491		30.5
Volumetric energy density (Wh L ⁻¹)	1312	Total areal weight - (g cm ⁻²)	6.0 x 10 ⁻²
Pack volumetric energy (Wh L ⁻¹)	571	Total areal volume (cm ³ per cm ²)	3.0 x 10 ⁻²
System volumetric energy density (Wh L ⁻¹)	444	Cathode thickness - (μm)	300
		(p)	
Electrochemical variables		Areal capacity Li ₂ O ₂ (mAh cm ⁻²)	31
		Specific capacity (mAh g ⁻¹)	521
Voltage (vs Li⁺/Li)	2.6		
		Ceramic protected lithium Anode	
Pack and power			
		Li thickness (µm)	191
Pack energy (kWh)	100	Lithium excess (%)	20
Pack specific energy (Wh kg ⁻¹)	587	Ceramic thickness (µm)	10
Pack volumetric energy (Wh L ⁻¹)	571	Current collector thickness (µm)	20
Pack mass scaling factor	1.6	Saving factor due to bipolar	2
Pack volume scaling factor	2	Density - (g cm ⁻³)	5.1
		Areal mass - (g cm ⁻²)	1.8 x 10 ⁻³
Pack mass (kg)	170	Areal volume (cm ³ per cm ²)	1.0 x 10 ⁻³
Pack volume (L)	175		
		Current collector/flow field	
Bilayer thickness (cm)	5.4 x 10 ⁻²		
Cell dimension (cm)	30	CC density (g cm ⁻³)	2.7
Current density (mA)	1	Thickness um	40
Additional volume (%) for volume change	15		
Energy per cell (Wh)	63	Areal weight (g cm ⁻²)	8.3 x 10 ⁻³
Total cells	1579	Areal volume - (cm ³ per cm ²)	3.1 x 10 ⁻³
Length of pack (cm)	85	Saving factor due to bipolar	1.3
Current per cell (mA)	900		
Power per cell (W)	2.4		
Total power (kW)	3.8	Polypropylene Separator	
			0.50
Balance of Plant		CC density (g cm ⁻³)	0.50
		Thickness (µm)	25
BOP volume (L)	50	Areal weight (g cm ⁻²)	1.2 x 10 ⁻³
BOP mass (kg)	50	Areal volume - (cm ³ per cm ²)	2.5 x 10 ⁻³
System volume (L)	225		
System mass (kg)	220	Additional Electrolyte in Separator	
Volumetric energy density (Wh L ⁻¹ system)	444		
Specific energy (Wh kg ⁻¹ system)	454	Solvent density (g cm ⁻³)	1
		Porosity of separator (%)	55
		Thickness (μm)	25
		Areal weight (g cm ⁻²)	1.4 x 10 ⁻³
		Areal volume - (cm ³ per cm ²)	2.5 x 10 ⁻³

Table S4. Parameters used to develop system performance predictions of an open Li-air system.

References

1. P. Hartmann, C. L. Bender, J. Sann, A. K. Dürr, M. Jansen, J. Janek and P. Adelhelm, *Phys. Chem. Chem. Phys.*, 2013, **15**, 11661–11672.