Supplementary Information

Green-light wavelength-selective organic solar cells for agrivoltaics: dependence of wavelength on photosynthetic rate

Seihou Jinnai,^{*, a,b} Naoto Shimohara,^a Kazunori Ishikawa,^a Kento Hama,^c Yohei Iimuro,^c Takashi Washio,^a Yasuyuki Watanabe,^{*, c} and Yutaka Ie^{*,a,b}

^a The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan

^b Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

^c Department of Mechanical and Electrical Engineering, Faculty of Engineering, Suwa University of Science, 5000-1 Toyohira, Chino, Nagano 391-0292, Japan

Table of Contents

Figures and tables	S02
Experimental infomation	S08
Preparation of materials	S08
NMR spectra	S09
Script for Bayesian optimization	S11
References	S13
Density functional theory (DFT) calculations	S14

Figures and tables

Fig. S1 Energy levels and distribution of the frontier orbitals for **TT-FT-ID** and **TT-T-ID** along with the experimental enegy levels of P3HT. All the alkyl groups for **TT-FT-ID** and **TT-T-ID** molecules were replaced with methyl groups to reduce the computational load.

Fig. R1 Photosynthetic rates for green pepper under (a) control conditions, (b) P3HT:TT-FT-ID blend film, and (c) P3HT:TT-T-ID blend film. Each point is the average of 4 measurements, and error bars indicate standard deviation. Experimental data for the above are given in Tables S9-11.

D:A ^a	solvent ^b	conc. ^c /mg mL ⁻¹	rotation / rpm	Ta ^d ∕°C	PCE / %	$J_{\rm sc}$ / mAcm ⁻²	$V_{\rm oc}/V$	FF / %
1:1	СВ	20	1000	-	0.95	3.29	0.86	34
1:1	CB	20	1000	130	1.43	4.27	0.84	40
1:1	DCB	20	1000	-	1.57	3.61	0.90	48
1:1	DCB	20	1000	130	1.26	3.39	0.86	43
1.5:1	СВ	20	1000	130	0.48	3.01	0.41	39
1:1.5	CB	20	1000	130	0.40	2.36	0.53	32
2:1	DCB	20	1000	-	1.63	4.06	0.76	38
1.5:1	DCB	20	1000	-	1.70	4.37	0.77	50
1:1.5	DCB	20	1000	-	1.36	3.90	0.78	44

Table S1 OSC characteristics of the P3HT:TT-FT-ID based devices.

^{*a*} Donor:acceptor weight ratio. ^{*b*} Process solvent (CB = chlorobenzene, DCB = 1,2-dichlorobenzene). ^{*c*} Concentration of total donor:acceptor weight. ^{*d*} Thermal annealing temperature in N₂ for 10 min.

D:A ^a	solvent ^b	conc. ^c /mg mL ⁻¹	rotation / rpm	<i>T</i> a ^{<i>d</i>} / °C	PCE / %	J _{sc} /mAcm ⁻²	$V_{\rm oc}/V$	FF / %
1:1	СВ	20	1000	-	0.14	0.50	0.78	36
1:1	CB	20	1000	130	0.51	2.25	0.58	39
1:1	DCB	20	1000	-	0.42	1.37	0.81	38
1:1	DCB	20	1000	130	0.52	2.25	0.51	45
2:1	DCB	20	1000	-	0.31	1.08	0.78	37
1.5:1	DCB	20	1000	-	0.40	1.29	0.84	37
1:1	DCB	20	1000	-	0.40	1.32	0.81	38
1:1.5	DCB	20	1000	-	0.31	1.10	0.77	37
1:2	DCB	20	1000	-		insoluble		

Table S2 OSC characteristics of the P3HT:TT-T-ID based devices.

^{*a*} Donor:acceptor weight ratio. ^{*b*} Process solvent (CB = chlorobenzene, DCB = 1,2-dichlorobenzene). ^{*c*} Concentration of total donor:acceptor weight. ^{*d*} Thermal annealing temperature in N₂ for 10 min.

D:A ^a	solvent ^b	conc. ^c /mg mL ⁻¹	rotation / rpm	Ta ^d ∕°C	PCE / %	J _{sc} /mAcm ⁻²	$V_{\rm oc}/V$	FF / %
1.5:1	DCB	10	500	-	1.90	4.36	0.82	53
1.5:1	DCB	10	1000	-	1.25	3.11	0.74	54
1.5:1	DCB	20	1000	-	1.88	4.66	0.88	46
1.5:1	DCB	20	3000	-	1.49	3.75	0.80	50
1.5:1	DCB	30	1000	-	1.47	3.87	0.91	42
1.5:1	DCB	30	3000	-	1.93	4.49	0.90	48
1.5:1	DCB	40	2000	-	1.74	4.36	0.87	46
1.5:1	DCB	40	4000	-	1.16	3.33	0.84	41
1.5:1	DCB	10	5000	-	0.00	-	-	-
1.5:1	DCB	40	1000	-	0.00	-	-	-

Table S3 OSC characteristics of the P3HT:TT-FT-ID based devices.

^{*a*} Donor:acceptor weight ratio. ^{*b*} Process solvent (CB = chlorobenzene, DCB = 1,2-dichlorobenzene). ^{*c*} Concentration of total donor:acceptor weight. ^{*d*} Thermal annealing temperature in N₂ for 10 min.

_									
	D:A ^a	solvent ^b	conc. ^c /mg mL ⁻¹	rotation / rpm	Ta ^d ∕°C	PCE / %	J _{sc} / mAcm ⁻²	$V_{\rm oc}/V$	FF / %
	1.5:1	DCB	5	500	-	0.00	-	-	-
	1.5:1	DCB	5	1000	-	0.00	-	-	-
	1.5:1	DCB	5	3000	-	0.00	-	-	-
	1.5:1	DCB	5	5000	-	0.00	-	-	-
	1.5:1	DCB	10	1000	-	0.02	0.99	0.09	27
	1.5:1	DCB	10	3000	-	0.00	-	-	-
	1.5:1	DCB	20	1000	-	0.40	1.29	0.84	37
	1.5:1	DCB	20	3000	-	0.09	0.87	0.27	37
	1.5:1	DCB	20	5000	-	0.06	0.76	0.24	35
	1.5:1	DCB	30	-	-		insoluble		

Table S4 OSC characteristics of the P3HT:TT-T-ID based devices.

^{*a*} Donor:acceptor weight ratio. ^{*b*} Process solvent (CB = chlorobenzene, DCB = 1,2-dichlorobenzene). ^{*c*} Concentration of total donor:acceptor weight. ^{*d*} Thermal annealing temperature in N₂ for 10 min.

conc. ^{<i>a</i>} /mg mL ⁻¹	rotation / rpm	predicted PCE ^b / %	PCE / %	J _{sc} /mAcm ⁻²	$V_{\rm oc}/V$	FF / %
28.3	2216	1.96	2.04	5.93	0.80	43
31.9	2457	1.98	2.00	5.94	0.79	43
17.6	500	2.11	1.98	4.42	0.86	52
40	2802	1.86	1.31	4.00	0.82	40

Table S5 OSC characteristics of the P3HT:TT-FT-ID based devices.

^{*a*} Concentration of total donor: acceptor weight. ^{*b*} Predicted PCE by BO.

Table S6 OSC characteristics of the P3HT:TT-T-ID based devices.

conc. ^{<i>a</i>} /mg mL ⁻¹	rotation / rpm	predicted PCE ^b / %	PCE / %	J _{sc} / mAcm ⁻²	$V_{\rm oc}/V$	FF / %
20.0	500	0.41	0.03	0.75	0.14	29
18.7	626	0.38	0.00	-	-	-
20.0	698	0.41	0.00	-	-	-
20.0	627	0.41	0.18	0.99	0.41	44

^{*a*} Concentration of total donor:acceptor weight. ^{*b*} Predicted PCE by BO.

Table S7 OSC characteristics of the optimized P3HT:TT-FT-ID based devices.

Run	PCE / %	J _{sc} / mAcm ⁻²	V _{oc} /V	FF / %
1	2.04	5.93	0.80	43
2	2.12	6.50	0.76	43
3	2.43	5.83	0.78	53
4	2.37	5.77	0.78	52
5	1.80	4.49	0.77	52
average	2.15 ± 0.26	5.70 ± 0.74	0.78 ± 0.01	49 ± 5

Table S8 OSC characteristics of the optimized P3HT:TT-T-ID based devices.

Run	PCE / %	J _{sc} /mAcm ⁻²	V _{oc} /V	FF / %
1	0.40	1.29	0.84	37
2	0.40	1.38	0.71	40
3	0.40	1.39	0.71	40
4	0.55	1.78	0.79	39
5	0.24	1.04	0.67	35
average	0.40 ± 0.11	1.38 ± 0.27	0.74 ± 0.07	38 ± 2

PPFD ^{a}	Photosynthetic rate /µmol CO ₂ m ⁻² s ⁻¹	Photosynthetic rate /μmol CO ₂ m ⁻² s ⁻¹	Photosynthetic rate /µmol CO ₂ m ⁻² s ⁻¹	Photosynthetic rate /µmol CO ₂ m ⁻² s ⁻¹	Photosynthetic rate /µmol CO ₂ m ⁻² s ⁻¹
	Batch 1	Batch 2	Batch 3	Batch 4	Average
0	-1.231704896	-1.042989088	-0.348542991	-1.139159675	-0.940599163
50	0.200240669	-0.006474152	0.64832943	-0.113694337	0.182100402
100	1.551144127	0.795560608	1.746363388	0.558814924	1.162970762
200	3.585932386	2.414174984	3.929976562	1.222454564	2.788134624
300	6.046457589	4.232693082	6.218539603	2.887496489	4.846296691
400	8.423985235	6.00390737	6.992365688	3.876391829	6.324162531
500	10.43899555	7.732516624	7.879711664	4.197258981	7.562120705
600	11.58580741	8.920801644	8.644713495	4.345319796	8.374160585
700	11.98170159	8.364336925	9.515883687	4.17518948	8.509277921
800	12.55597955	8.613533769	9.860548115	4.085974635	8.779009017
900	13.11503561	8.928202224	9.909685885	4.219497107	9.043105207
1000	13.23457186	9.27297488	10.15425693	4.139898395	9.200425515
1500	13.39292236	8.833746055	10.24816607	3.981990233	9.114206179
2000	13.73297193	9.498898918	10.33783577	4.096212009	9.416479657

Table S9 The photosynthetic rate for green pepper under control conditions.

^{*a*} Photosynthetic photon flux density.

$PPFD^{a}$	Photosynthetic rate /µmol CO ₂ m ⁻² s ⁻¹	Photosynthetic rate /μmol CO ₂ m ⁻² s ⁻¹	Photosynthetic rate /μmol CO ₂ m ⁻² s ⁻¹	Photosynthetic rate /μmol CO ₂ m ⁻² s ⁻¹	Photosynthetic rate /μmol CO ₂ m ⁻² s ⁻¹
/ μmoi m - s -	Batch 1	Batch 2	Batch 3	Batch 4	Average
0	-1.441779833	-0.484825183	-0.948308864	-0.155683978	-0.757649465
50	-0.681074821	0.561408457	-0.232507033	0.500535347	0.037090488
100	0.274030794	1.013752031	0.708579314	0.769885196	0.691561834
200	1.754820634	2.277511971	1.880839327	1.387959967	1.825282975
300	3.330612199	3.929076491	3.019201869	2.936085169	3.303743932
400	4.67770562	5.561807291	4.047052587	3.715638547	4.500551011
500	6.87891455	7.183515527	5.174760831	4.500529224	5.934430033
600	7.684811606	8.229880197	5.922756165	5.142438632	6.74497165
700	8.856360744	8.650512459	6.443909534	5.249705052	7.300121947
800	9.090074924	9.088193863	5.92797715	5.274381027	7.345156741
900	9.020536583	9.302233847	5.912020063	5.309574786	7.38609132
1000	8.92505013	9.725731265	5.770586413	5.144683335	7.391512785
1500	9.525438576	9.93792437	6.019447874	5.148891028	7.657925462
2000	9.682972693	10.84754744	6.26107672	5.433171203	8.056192015

^{*a*} Photosynthetic photon flux density.

PPFD ^{<i>a</i>}	Photosynthetic rate /μmol CO ₂ m ⁻² s ⁻¹	Photosynthetic rate /μmol CO ₂ m ⁻² s ⁻¹	Photosynthetic rate /μmol CO ₂ m ⁻² s ⁻¹	Photosynthetic rate /μmol CO ₂ m ⁻² s ⁻¹	Photosynthetic rate $/\mu$ mol CO ₂ m ⁻² s ⁻¹	
	Batch 1	Batch 2	Batch 3	Batch 4	Average	
0	-0.671871224	-0.735713658	-0.280411328	-0.863309956	-0.637826542	
50	0.173048389	-0.508836828	0.036913232	-0.115170446	-0.103511413	
100	0.828800456	0.620464945	0.473160557	0.128759401	0.51279634	
200	1.691448507	1.458086846	0.752130743	0.690185871	1.147962992	
300	3.402649227	2.649288874	1.935223702	1.852153682	2.459828871	
400	4.902039106	4.005606882	3.049924085	2.555251271	3.628205336	
500	6.389930447	5.159029797	4.258492209	2.970082161	4.694383654	
600	7.297440488	5.994199582	4.66187171	3.290101891	5.310903418	
700	8.617089643	6.649392732	5.004452571	3.719376106	5.997577763	
800	8.882130175	6.897620445	5.509407984	3.485352416	6.193627755	
900	10.21655004	6.736112897	5.476994822	3.344908589	6.443641588	
1000	10.37061769	6.361857316	5.410536084	3.023832968	6.291711015	
1500	10.2636043	6.652594886	5.457905169	2.905544377	6.319912182	
2000	11.64075462	7.012521149	5.689293656	2.7479617	6.772632781	

Table S11 Photosynthetic rate for green pepper using the P3HT:TT-T-ID blend film.

^{*a*} Photosynthetic photon flux density.

Experimental information

Column chromatography was performed on silica gel, KANTO Chemical silica gel 60N (40–50 μ m). Thinlayer chromatography plates were visualized by exposure to UV light. ¹H and ¹³C NMR spectra were recorded on a JEOL ECS-400 spectrometer. Data are reported as follows: chemical shift in ppm (∂), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, br = broad), coupling constant (Hz). Mass spectra were obtained on a Shimadzu AXIMA-TOF system. UV-vis spectra were recorded on a Shimadzu UV-3600 spectrophotometer. Photoelectron yield spectroscopy (PYS) was performed using a Bunkoukeiki BIP-KV202GD instrument. Low-energy inverse photoemission spectroscopy (LEIPS) was performed by Ulvac-Phi, Inc. LEIPS system. The surface structures of the deposited organic films were observed by atomic force microscopy (AFM) (Shimadzu, SPM9600). Elemental analysis was performed on a Perkin Elmer LS-50B instrument by the Elemental Analysis Section of Comprehensive Analysis Center (CAC), SANKEN, Osaka University.

Preparation of materials.

Commercially available reagents were used without further purification. All reactions were carried out under a nitrogen atmosphere. **1** and **2** was prepared by our previously reported procedure.²

Synthesis of **TT-FT-ID**: Piperidine (100 µL) was added to solution of **1** (65 mg, 0.055 mmol) and 1,3indanone (64 mg, 0.44 mmol) in CHCl₃ (5 mL) and the resulting mixture was stirred at 65 °C for 12 h. Methanol (10mL) was added to the reaction mixture and the resulting precipitate was collected on a filtern. The crude product was purified by column chromatography on silica gel (hexane/CHCl₃=2/1, v/v, $R_f = 0.3$), followed by further purification with reprecipitation using CHCl₃ and acetone to give TT-FT-ID (61 mg, 77%). Deep purple solid. ¹H NMR (400 MHz, TMS) δ : 7.98 (m, 2H), 7.93 (m, 2H), 7.83 (s, 2H), 7.77 (m, 4H), 7.61 (s, 2H), 7.59 (d, *J* = 8.0 Hz, 2H), 7.59 (d, *J* = 8.0 Hz, 4H), 7.14 (d, *J* = 8.0 Hz, 4H), 7.06 (s, 4H), 3.45 (d, *J* = 16.4 Hz, 8H), 2.52 (d, *J* = 7.2 Hz, 8H), 1.52 (m, 4H), 1.35-1.14 (br, 32H), 0.80 (m, 24H). ¹³C NMR (100 MHz, TMS) δ : 190.13, 189.97, 164.01, 151.15, 144.13, 142.06, 141.83, 141.57, 140.55, 139.76, 139.64, 137.10, 134.94, 134.77, 133.32, 133.29, 128.90, 127.14, 123.06, 122.92, 122.77, 119.34, 118.61, 62.07, 41.86, 41.15, 40.75, 40.24, 32.26, 28.79, 25.46, 23.05, 14.14, 10.83. MS *m/z* calcd. for C₉₆H₁₀₀O₄S₄ (M⁻): 1446; found: 1446. Anal. calcd for C₉₆H₁₀₀O₄S₄: C 79.74, H 6.97; found: C 79.57, H 6.99.

Synthesis of **TT-T-ID**: Compound **TT-T-ID** was synthesized from **2** (60 mg, 0.103 mmol) by following the procedure used for the preparation of **TT-FT-ID**. Yield: 51 mg (60%). Deep purple solid. ¹H NMR (400 MHz, TMS) δ : 8.00-7.97 (m, 4H), 7.91 (s, 2H), 7.80-7.78 (m, 4H), 7.59 (s, 2H), 2.84 (d, J = 7.2 Hz, 4H), 1.76 (m, 2H), 1.41-1.26 (br, 16H), 0.90 (m, 12H). ¹³C NMR (100 MHz, TMS) showed no distinct peaks due to its limited solubility in CDCl₃. MS *m/z* calcd. for C₅₀H₄₈O₄S₄ (M⁻): 841; found: 841. Anal. calcd for C₅₀H₄₈O₄S₄: C 71.39, H 5.75; found: C 71.19, H 5.78.

NMR Spectra ¹H NMR spectrum of **TT-FT-ID**

Script for Bayesian optimization

Bayesian optimizations were performed for the experimental data (Table S3 and S4) based on the following Python script.

import numpy as np import pandas as pd import GPy import GPyOpt import datetime				
# Prediction number		А	В	С
batch_size = 4	1	У	x0	x1
	2	1.9	1	0 500
# Display GPR results (only for num_x=z): True/Faise	3 4	1.25	2	0 1000
gpi_output – Paise	5	1.49	2	0 3000
# Data file loading. File name: data.csv	6	1.47	3	0 1000
data = pd.read_csv("data.csv")	7	1.93	3	0 3000
				: :
# Experimental data storing x_results = data.iloc[:,1:] # Conditions		Example	e for "c	lata.csv"
y_results = data.iloc[:,0] # Power conversion efficiency				
# Number of experimental variables num_x = len(data.columns)-1				
# Variables for GPR norm_x_suggest = [] y_predict = [] y_mean = [] y_variance = []				
# List XY data x_data = np.asarray(x_results).astype(float) y_data = np.asarray(y_results) y_data = y_data.reshape(len(y_data),1) y_data = -y_data				
<pre># Standardization of Conditions (x_results) : Min-Max standardization # x0:Concentration, x1:Rotational speed. norm_x_data = x_data norm_x_data[:,0] = norm_x_data[:,0] / 40 # Scale 0-40 mg/mL to 0-1 norm_x_data[:,1] = norm_x_data[:,1] / 5000 # Scale 0-5000 rpm to 0-1</pre>				
<pre># Range of experimental conditions bounds = [{'name': 'x1', 'type': 'continuous', 'domain': (0.1, 1)},</pre>				
print("GPR started for {} batches".format(batch_size))				
for i in range(batch_size):				
<pre># Parameter for GPR params = {'acquisition_type':'LCB',</pre>	the c	dimensio	n of ing	but by bounds

```
}
```

```
# Execution of GPR
b_opt = GPyOpt.methods.BayesianOptimization(**params)
```

```
norm_x_suggest.append(b_opt.suggest_next_locations(ignored_X = norm_x_data))
y_predict.append(b_opt.model.model.predict(norm_x_suggest[i]))
```

```
norm_x_data = np.append(norm_x_data, norm_x_suggest[i], axis=0)
y_data = np.append(y_data, y_predict[i][0], axis=0)
```

Separation of mean values and variance values
y_mean.append(y_predict[i][0])
y_variance.append(y_predict[i][1])

```
# Show/Save GPR results
```

if gpr_output == True:

b_opt.plot_acquisition()

else:

date = str(datetime.date.today())
batch = str(i + 1)
filename = date + '_' + batch
b_opt.plot_acquisition(filename)

print('GPR for batch: {} completed'.format(i+1))

Output of prediction
print("\nNext {} experiment conditions are as follow:".format(batch_size))
for i in range(batch_size):
 print("\nCondition for batch {} :".format(i+1))
 print("Concentration [variable 1]: {:.1f} mg/mL".format(norm_x_suggest[i][0][0] * 40))
 print("Rotational speed [variable 2]: {:.0f} rpm".format(norm_x_suggest[i][0][1] * 5000))
 print("Predicted PCE (mean): {:.2f}%".format(-y_mean[i][0][0]))
 print("Variance: {:.3f}%".format(y_variance[i][0][0]))

References

- 1 S. Jinnai, Y. Ie, M. Karakawa, T. Aernouts, Y. Nakajima, S. Mori, and Y. Aso, *Chem. Mater.* **2016**, *28*, 1705–1713.
- 2 S. Jinnai, K. Murayama, K. Nagai, M. Mineshita, K. Kato, A. Muraoka, A. Yamakata, S. Saeki, Y. Kobori, and Y. Ie, *J. Mater. Chem. A* **2022**, *10*, 20035–20047.

Density functional theory (DFT) calculations

All calculations were conducted using the Gaussian 16 program. The geometry was optimized with the Becke Hybrid (B3LYP) at 6-31G(d,p) level. All of the alkyl groups were replaced with methyl groups to reduce the computational load.

Optimize	d structure	e of TT-FT-ID		67	6	0	-6.359244	4.332084	-1.949704
Center	Atomic	Atomic	Coordinates (Angstroms)	68 69	ь 6	0	-0.829290	5.549447 6.370274	-2.278425
Number	Number	Type	X Y Z	70	6	Õ	-7.209466	6.002309	-0.006605
		·····		71	6	0	-6.877036	4.647455	2.723532
1	6 0	2.089349	0.102024 0.148954	72	6	0	-6.635898	3.850452	3.777472
2	6 0	3.434214	0.185604 0.227746	73	6	0	-6.113993	2.618684	3.624198
3	6 U	4.335984	-0.788011 0.403500	74	6	0	-5.831635	2.181636	2.383256
4 5	6 0	5 57/19/2	1.437824 0.132198	75	6	0	-0.891178	1 750624	-5.720402
6	6 0	5.567575	-0.288415 0.435428	70	1	0	7.590970	1.119141	0.402406
7	6 0	6.707321	1.767596 0.255220	78	1	Ō	10.385847	5.325574	0.031981
8	6 0	7.021719	3.072898 0.101791	79	1	0	9.879144	7.697945	-0.329098
9	6 0	8.332846	3.469140 0.140848	80	1	0	7.579802	8.449251	-0.596380
10	6 0	8.314612	4.809057 -0.043704	81	1	0	5.723400	6.857939	-0.508806
11	6 0	6 211/68	5.216159 -0.188964	82	1	0	6.9/130/ 7 501060	-1.2/14/5	1.689639
12	6 0	9 344547	5 663624 -0 087870	83	1	0	3 656161	-2 813693	-0.054954
14	6 0	9.058022	6.962492 -0.286324	85	1	õ	3.980445	-2.500370	1.614232
15	6 0	7.786028	7.377655 -0.434000	86	1	Ō	7.525728	-6.763420	0.051075
16	6 0	6.760715	6.508374 -0.387092	87	1	0	7.601912	-7.091815	2.456442
17	8 0	9.331144	2.799312 0.303033	88	1	0	5.987829	-3.221676	3.072956
18	6 0	-6.192364	-4.130043 -0.366857	89	1	0	5.407097	-1.495610	-2.188162
19	6 0		-1.324/55 0.629918	90	1	0	6.853623	-4.883376	-4.280189
20	6 0	0 3.801575 1 4.302725	-2.001951 0.304200	91	1	0	6 236268	-6.027202	-2.180154
22	6 0	6.059312	-3.144039 -1.030121	93	1	0	7.911830	-5.621496	4.712439
23	6 0	6.570241	-4.385116 -1.024770	94	1	Õ	6.496761	-4.550649	4.984604
24	6 0	6.711136	-4.802511 0.241928	95	1	0	6.388757	-1.437093	-4.685095
25	6 0	6.292728	-3.839187 1.077140	96	1	0	6.165303	-2.994968	-5.547073
26	6 0	7.178024	-5.962703 0.722643	97	1	0	4.752869	-2.201145	-4.770267
27	6 0	/.218019	-6.139484 2.053716	98	1	0	1.506486	2.208956	-0.088753
28	6 0	6 335629	-5.183006 2.905372	99 100	1	0	-1.506512	-2.154048	-0 617/88
30	6 0	5.826996	-2.513531 -2.190319	100	1	0	-10.350361	-5.293859	-0.774869
31	6 0	6.105809	-3.124447 -3.356296	102	1	Õ	-9.838746	-7.689177	-0.646471
32	6 0	6.619081	-4.369285 -3.333307	103	1	0	-7.544683	-8.455772	-0.377825
33	6 0	6.855174	-5.008956 -2.175620	104	1	0	-5.698653	-6.856782	-0.228600
34	6 0	6.862853	-5.421131 4.395788	105	1	0	-7.523222	1.220343	0.061456
35	6 U			106	1	0	-6.926/83	1.465518	-1.646111
30	6 0	0 007273	-0.632703 0.074846	107	1	0	-4.000311	2.071801	-1.410887
38	6 0	-0.009637	0.690501 -0.043670	100	1	ŏ	-6.009145	3.639719	-2.731175
39	6 0	1.243330	1.144911 -0.004618	110	1	Ō	-7.642233	7.369908	-1.553055
40	6 0	-1.243905	-1.089236 0.010850	111	1	0	-7.560776	6.695332	0.774106
41	6 0	-2.089549	-0.046227 -0.142134	112	1	0	-7.303568	5.650713	2.880102
42	16 (L 1.239403 -0.184379	113	1	0	-6.870865	4.216083	4.791123
43	6 0	-3.432534	-0.131003 -0.247946	114	1	0	-5.404978	1.1/8430	2.232524
44	16 0	-4.330332	0.849831 -0.301113	115	1	0	-7 152252	5 121260	-4.044298
46	6 0	-5.566884	-0.988055 -0.409381	110	1	ŏ	-7.657246	6.764905	-3.898630
47	6 0	-5.564751	0.349914 -0.454867	118	1	0	-6.784229	1.652828	5.446472
48	6 0	-6.693453	-1.718490 -0.500577	119	1	0	-5.532635	0.721989	4.562546
49	6 0	-7.002997	-3.033669 -0.488967	120	1	0	-5.061836	2.201922	5.467735
50	6 0	-8.308972	-3.428766 -0.614951						
51	6 0		-4.780509 -0.570389	Ontimiza	distruct	uro c			
53	8 0	-4.994715	-4.252456 -0.234538						
54	6 0	-9.311452	-5.638747 -0.653087	Center	Atomio	: A	tomic	Coordinate	s (Angstroms)
55	6 0	-9.022288	-6.950121 -0.581881	Number	Num	ber	Туре	X Y	ž
56	6 0	-7.753268	-7.373799 -0.433085						
57	6 0	-6.733666	-6.500442 -0.350557	1	6	0	-1.892473	0.894382	0.040122
58	8 0	-9.305992	-2./49486 -0./42664	2	6	0	-3.124931	1.446452	0.036043
59 60	8 U	-6 620027	4.2/490/ -U.2U/492 1 207822 -0 57/6/5	З Л	0 16	0	-3.434511	2.720930 0.666884	0.041138
61	6 0	-5,811742	2.634718 -0.135124	4 5	6	õ	-5.381074	1.724337	0.020711
62	6 0	-4.312272	2.348653 -0.389469	6	6	õ	-4.761873	2.920649	0.033404
63	6 0	-6.312096	3.957119 -0.663714	7	6	0	-6.721321	1.577790	0.006172
64	6 0	-6.734433	4.788196 0.301676	8	6	0	-7.597295	0.547197	-0.012510
65	6 0	-6.588901	4.195291 1.495786	9	6	0	-8.944577	0.800997	-0.022691
66	60	-6.069425	2.969516 1.324106	10	6	0	-9.546603	-0.410023	-0.041689

11	6	0	-8.615989 -1.362850 -0.043143
12	6	0	-7.379471 -0.805026 -0.025184
13	6	0	-10.854552 -0.696433 -0.057676
14	6	0	-11.199517 -1.996039 -0.075520
15	6	0	-10.262267 -2.962254 -0.077218
16	6	0	-8.951725 -2.660045 -0.060928
17	8	Ō	-9.525561 1.866007 -0.016710
18	6	Ō	7.379250 0.805177 -0.024875
19	6	Ō	-5.410341 4.280893 0.036212
20	16	0	-0.651541 1.707148 0.045221
21	6	õ	0.293762 0.595953 0.043692
22	6	õ	-0.293592 -0.596411 0.043067
23	6	õ	-1 616464 -0 428201 0 040096
24	6	õ	1 616539 0 427822 0 041193
25	6	ñ	1 892656 -0 894726 0 040302
26	16	ñ	0.651646 -1.707612 0.044168
27	6	ñ	3 125079 -1 446746 0 036418
22	6	ñ	3 / 3 / 7 3 0 -2 751233 0 0 / 0 5 / 2
20	16	0	A 368835 _0 667112 0 026862
20	6	ñ	5 281225 -1 72/500 0.021500
21	6	0	A 7621AQ _2 Q20886 0 033151
22	6	0	6 721/05 -1 577783 0 007106
22	6	0	7 507250 0 547066 0 011704
27	6	0	2 044575 0 200652 0 021205
25	6	0	0546472 0410466 0041570
26	6	0	9.540472 0.410400 -0.041579
20	0	0	6.013032 1.303118 -0.043323 6.373637 1.479766 0.033466
27 20	0	0	
20	6	0	$10.054454 \ 0.097007 \ -0.057825$
39	6	0	10.261702 2.062725 0.078404
40	6	0	
41	0	0	0.951202 2.000500 -0.001000
42	0	0	9.323773 -1.003393 -0.013330
45	0	0	-0.572002 -1.470740 -0.025551
44 1E	1	0	2 7 2 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2
45	1	0	7 226555 2 5506150 0.050129
40	1	0	
47	1	0	
48	1	0	
49	1	0	
50	1	0	-8.192975 -3.458412 -0.062660
51	1	0	-6.047265 4.413136 0.940049
52	1	0	-4.65441/ 5.09//5/ 0.048/51
53	1	0	-6.030772 4.425100 -0.877109
54	1	0	-2.33/910 -1.25/498 0.03/481
55	1	0	2.33/962 1.25/149 0.0395/1
56	1	0	2./22894 -3.588530 0.048439
57	1	0	7.226808 -2.559699 0.010261
58	1	0	11.622844 -0.092088 -0.056360
59	1	0	12.266852 2.273959 -0.090491
60	1	0	10.5/2/39 4.021211 -0.094314
61	1	0	8.192426 3.458635 -0.063923
62	1	0	6.04/394 -4.414364 0.938214
63	1	0	4.654863 -5.09/966 0.045620
64	1	0	6.031334 -4.424044 -0.879007