Electronic Supplementary Material (ESI) for Faraday Discussions. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Reducing Undesired Solubility of Squarephaneic Tetraimide for Use as an Organic Battery Electrode Material

Bowen Ding,^a Manik Bhosale,^b Troy L.R. Bennett,^a Martin Heeney,^{a,c} Felix Plasser,^d Birgit Esser,^{b*} and Florian

Glöcklhofer^{a,e*}

^aDepartment of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub (White City Campus), 80 Wood Lane Shepherd's Bush, London W12 0BZ, United Kingdom

^bInstitute of Organic Chemistry II and Advanced Materials, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany

^ePhysical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

^dDepartment of Chemistry, Loughborough University, Loughborough LE11 3TU, United Kingdom

eInstitute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria

*Corresponding Authors: Birgit Esser (<u>birgit.esser@uni-ulm.de</u>) & Florian Glöcklhofer (<u>f.glocklhofer@imperial.ac.uk</u>, <u>florian.gloecklhofer@tuwien.ac.at</u>)

GENERAL METHODS

UV/Vis data were collected using an Agilent CARY 60 UV/Vis spectrometer, whilst an Agilent Eclipse Fluorescence spectrophotometer was used for the collection of fluorescence data (both interfaced with SCAN software), for samples dissolved in either spectroscopic grade CHCl₃ or DMSO. Elemental analyses were performed through the Elemental Analysis Service Team at London Metropolitan University (United Kingdom), the samples for which were prepared by overnight drying under high vacuum at 120 °C.

ELECTROCHEMISTRY

Solution and solid state cyclic voltammetry (CV) measurements were conducted with a Metrohm Autolab PGSTAT101 Electrochemical Analyser interfaced to NOVA software. A one compartment three electrode electrochemical cell was used for all measurements, featuring a 7.1 mm² glassy carbon working electrode (WE) and a Pt counter electrode. Solid and solution state measurements were conducted in 0.1 M [*n*-Bu₄N]PF₆/MeCN and [*n*-Bu₄N]PF₆/DMF respectively, with use of an Ag/Ag⁺ non-aqueous reference electrode and addition of ferrocene

internal reference. Saturation of the electrolyte with N₂ by bubbling for 20 mins was performed to deoxygenate before measurements were taken. Solid state samples were immobilised onto the WE surface by dipping the electrode into a paste made with MeCN. [*n*-Bu₄N]PF₆ for electrochemistry was recrystallized twice in EtOH.

NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY

Solution state ¹H and ¹³C NMR spectra were collected on either a Bruker AVANCE 400 or 500 MHz spectrometer. Deuterated CDCl₃ and DMSO- d_6 for NMR were obtained from Sigma Aldrich, and their solvent residual signals were used as internal references for chemical shifts (δ).

Figure S1: ¹H NMR of SqTI-iP in CDCl₃ at 298 K.

Figure S3: ¹H NMR of SqTI-Hp in CDCl₃ at 298 K.

Figure S5: ¹H NMR of SqTI-tBu in CDCl₃ at 298 K.

Figure S6: ¹H NMR of SqTI-tBu in DMSO-*d*₆ at 298 K.

Figure S7: ¹³C{¹H} NMR of SqTI-tBu in CDCl₃ at 298 K.

Figure S8: ¹H NMR of SqTI-tBu after attempted acidic sidechain cleavage by overnight refluxing in trifluoracetic acid, in DMSO- d_6 at 298 K.

Figure S9: ¹H NMR of SqTI-H in DMSO-*d*₆ at 298 K.

HIGH-RESOLUTION MASS SPECTROMETRY (HRMS)

Figure S11: HRMS trace of SqTI-iP.

Figure S12: HRMS trace of SqTI-Hp.

Figure S13: HRMS trace of SqTI-tBu.

THERMOGRAVIMETRIC ANALYSIS (TGA)

Thermogravimetric analyses (TGA) were performed on a Mettler Toledo TGA at a heating rate of 10 °C min⁻¹, under a constant stream of N_2 at a flow rate of *ca*. 50 mL min⁻¹.

Figure S14: TGA traces of (a) SqTI-H (blue) with dashed line showing 3% mass loss attributed to removal of MeOH, (b) SqTI-tBu (violet) with blue dashed line showing ~25% mass loss possibly linked to formation of unsubstituted SqTI, (c) SqTI-iP (dark cyan) with dark cyan dashed line denoting ~20% mass loss predicted to correspond with formation of unsubstituted SqTI (not observed), and (d) SqTI-Hp (burgundy) with burgundy dashed line denoting ~37% mass loss predicted to correspond with formation of unsubstituted SqTI (not observed).

INFRARED (IR) SPECTROSCOPY

Solid state total reflectance ATR-IR spectra were obtained on an Agilent CARY 630 FTIR spectrometer.

Figure S15: ATR-IR of SqTA (red), SqTI-H (blue) and SqTI-iP (dark cyan), with labelling of N-H stretching at 3200 cm⁻¹ for SqTI-H, alkyl C-H stretching between 2800 – 3000 cm⁻¹ for SqTI-iP as well as C-N stretching at 1340 cm⁻¹ for both SqTI-H and SqTI-iP.

POWDER X-RAY DIFFRACTION (PXRD)

Powder X-ray diffraction (PXRD) data were collected with a Bruker D2 Phaser Diffractometer producing Cu-K_{α} (λ =

1.5418 Å) radiation, fitted with an SSD 160 detector.

Figure S16: PXRD pattern of SqTI-H (blue), as compared to the predicted pattern of SqTA (red) from its single crystal X-ray diffraction structure.¹

DIFFERENTIAL SCANNING CALORIMETRY (DSC)

Differential scanning calorimetry (DSC) traces between 40 - 300 °C were collected on a Mettler DSC822e differential scanning calorimeter, at a heating rate of 10 °C/min under a N₂ environment.

Figure S17: DSC trace (2 cycles) of SqTI-H between 40 to 300 °C.

Figure S18: SqTI-H composite electrode performance in 1 M LiTFSI/1:1 1,3-dioxolane (DOL) and 1,2-dimethoxyethane (DME) showing (a) cycling voltammograms and (b) charge/discharge profiles at 50 mA/g (0.5 C) constant current cycling.

Figure S19: Ketjen Black electrode performance in 1 M LiTFSI/1:1 DOL+DME showing (a) cycling performance and coulombic efficiency, (b) cycling voltammograms and (c) charge/discharge profile at 100 mA/g (1C) constant current cycling.

REFERENCE

 Eder, S.; Ding, B.; Thornton, D. B.; Sammut, D.; White, A. J. P.; Plasser, F.; Stephens, I. E. L.; Heeney, M.; Mezzavilla, S.; Glöcklhofer, F., *Angew. Chem. Int. Ed.* 2022, *61*, e202212623.