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Supplementary Figure legends
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Fig S1. Vitamin D deficiency in early life effect on serum 1,25-dihydroxyvitamin Ds,
calcium and PTH in adult and offspring rats. 1,25-dihydroxyvitamin Dj levels in the
serum of (A) F1 rats at 8 week, (B) F1 rats at 18 week, (C) F2 rats at 8 week. Serum
calcium ion levels in (D) F1 rats at 8 week, (E) F1 rats at 18 week, (F) F2 rats at 8
week. PTH levels in the serum of (G) F1 rats at 8 week, (H) F1 rats at 18 week, (I) F2
rats at 8 week. Data were presented as the means + SDs, Early-VDD vs. Control

group * P <0.05.
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Fig S2. The effect of early vitamin D deficiency on fasting blood glucose, blood
insulin concentration and HOMA-IR in adult and offspring rats. Fasting blood glucose
levels of (A) F1 rats 8 week, (B) F1 rats 18 week and (C) F2 rats 8 week. Blood
insulin concentration of (D) F1 rats 8 week, (E) F1 rats 18 week and (F) F2 rats 8
week. HOMA-IR levels of (G) F1 rats 8 week, (H) F1 rats 18 week, (I) F2 rats 8 week.
Data were presented as the means = SDs, Early-VDD vs.Control group * P <0.05.
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Fig S3.The effect of early vitamin D deficiency on serum lipid metabolism in F1 rats.
Lipid metabolism of F1 rats at 8 week (A-H). (A)ALT, (B)AST, (C)ALB, (D)TP, (E)
TG,(F)CHO, (G)HDL, (H)LDL. Lipid metabolism of F1 rats at 18 week (I-P).(I) ALT,
(J) AST, (K) ALB,(L) TP, (M) TG, (N) CHO, (O) HDL, (P) LDL. Data were
presented as the means + SDs, Early-VDD vs. Control group * P <0.05.



Fig. S4. Vitamin D deficiency in early life alters the composition of gut microbiota in F1 male
rats at 8 week. (A) Comparison of Alpha Diversity of gut microbiota between different groups
using Shannon index. (B) Comparison of Beta Diversity of gut microbiota between different
groups using non-linear model PCoA method based on OTUs information in samples. (C) Relative
abundance of microbiota at the genus level. (D) Cladogram generated from LEfSe analysis. (E) A
histogram of the log 10 transformed Linear discriminant analysis (LDA) scores was computed for
features that showed differential abundance between F1 Male Early-VDD and F1 Male Control at
8 week. (F) The top ten genera with a rich difference between F1 Male Early-VDD and F1 Male
Control at 8 week.



Fig. S5. Vitamin D deficiency in early life alters the composition of gut microbiota in F1
female rats at 8 week. (A) Comparison of Alpha Diversity of gut microbiota between different
groups using Shannon index. (B) Comparison of Beta Diversity of gut microbiota between
different groups using non-linear model PCoA method based on OTUs information in samples. (C)
Relative abundance of microbiota at the genus level. (D) Cladogram generated from LEfSe
analysis. (E) A histogram of the log 10 transformed Linear discriminant analysis (LDA) scores
was computed for features that showed differential abundance between F1 Female Early-VDD and
F1 Female Control at 8 week. (F) The top ten genera with a rich difference between F1 Female
Early-VDD and F1 Female Control at 8 week.



Fig. S6. Vitamin D deficiency in early life effects on the composition of gut microbiota in F1
male rats at 18 week. (A) Comparison of Alpha Diversity of gut microbiota between different
groups using Shannon index. (B) Comparison of Beta Diversity of gut microbiota between
different groups using non-linear model PCoA method based on OTUs information in samples. (C)
Relative abundance of microbiota at the genus level. (D) Cladogram generated from LEfSe
analysis. (E) A histogram of the log 10 transformed Linear discriminant analysis (LDA) scores
was computed for features that showed differential abundance between F1 Male Early-VDD and
F1 Male Control at 18 week. (F) The top ten genera with a rich difference between F1 Male Early-
VDD and F1 Male Control at 18 week.
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Fig. S7. Vitamin D deficiency in early life effects on the composition of gut microbiota in F1

female rats at 18 week. (A) Comparison of Alpha Diversity of gut microbiota between different

groups using Shannon index. (B) Comparison of Beta Diversity of gut microbiota between

different groups using non-linear model PCoA method based on OTUs information in samples. (C)

Relative abundance of microbiota at the genus level. (D) The top ten genera with a rich difference
between F1 Female Early-VDD and F1 Female Control at 18 week.



Fig. S8. Vitamin D deficiency in early life alters the composition of gut microbiota in F2 male
rats at 8 week. (A) Comparison of Alpha Diversity of gut microbiota between different groups
using Shannon index. (B) Comparison of Beta Diversity of gut microbiota between different
groups using non-linear model PCoA method based on OTUs information in samples. (C) Relative
abundance of microbiota at the genus level. (D) Cladogram generated from LEfSe analysis. (E) A
histogram of the log 10 transformed Linear discriminant analysis (LDA) scores was computed for
features that showed differential abundance between F2 Male Early-VDD and F2 Male Control at
8 week. (F) The top ten genera with a rich difference between F2 Male Early-VDD and F2 Male
Control at 8 week.



Fig. S9. Vitamin D deficiency in early life alters the composition of gut microbiota in F2
female rats at 8 week. (A) Comparison of Alpha Diversity of gut microbiota between different
groups using Shannon index. (B) Comparison of Beta Diversity of gut microbiota between
different groups using non-linear model PCoA method based on OTUs information in samples. (C)
Relative abundance of microbiota at the genus level. (D) Cladogram generated from LEfSe
analysis. (E) A histogram of the log 10 transformed Linear discriminant analysis (LDA) scores
was computed for features that showed differential abundance between F2 Female Early-VDD and
F2 Female Control at 8 week. (F) The top ten genera with a rich difference between F2 Female
Early-VDD and F2 Female Control at 8 week.
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Fig. S10. Changes of metabolites and metabolic pathways in feces of F1 male rats at 8 week.

(A) Heatmap of changed fecal metabolites in F1 Male Early-VDD and F1 Male Control by LC-
MS analysis at 8 week. (B) KEGG enriched pathways of changed fecal metabolites by LC-MS in
F1 Male Early-VDD vs. F1 Male Control at 8 week. (C) Heatmap of changed fecal metabolites in
F1 Male Early-VDD and F1 Male Control by GC-MS analysis at 8 week. (D) KEGG enriched
pathways of changed fecal metabolites by GC-MS in F1 Male Early-VDD vs. F1 Male Control at

8 week.
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Fig. S11. Changes of metabolites and metabolic pathways in feces of F1 female rats at 8 week.
(A) Heatmap of changed fecal metabolites in F1 Female Early-VDD and F1 Female Control by
LC-MS analysis at 8 week. (B) KEGG enriched pathways of changed fecal metabolites by LC-MS
in F1 Female Early-VDD vs. F1 Female Control at 8 week. (C) Heatmap of changed fecal
metabolites in F1 Female Early-VDD and F1 Female Control by GC-MS analysis at 8 week. (D)
KEGG enriched pathways of changed fecal metabolites by GC-MS in F1 Female Early-VDD vs.
F1 Female Control at 8 week.
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Fig. S12. Changes of metabolites and metabolic pathways in feces of F1 male rats at 18 week.
(A) Heatmap of changed fecal metabolites in F1 Male Early-VDD and F1 Male Control by LC-
MS analysis at 8 week. (B) KEGG enriched pathways of changed fecal metabolites by LC-MS in
F1 Male Early-VDD vs. F1 Male Control at 8 week. (C) Heatmap of changed fecal metabolites in
F1 Male Early-VDD and F1 Male Control by GC-MS analysis at 8 week. (D) KEGG enriched
pathways of changed fecal metabolites by GC-MS in F1 Male Early-VDD vs. F1 Male Control at

8 week.
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Fig. S13. Changes of metabolites and metabolic pathways in feces of F1 female rats at 18
week.

(A) Heatmap of changed fecal metabolites in F1 Female Early-VDD and F1 Female Control by
LC-MS analysis at 18 week. (B) KEGG enriched pathways of changed fecal metabolites by LC-
MS in F1 Female Early-VDD vs. F1 Female Control at 18 week. (C) Heatmap of changed fecal
metabolites in F1 Female Early-VDD and F1 Female Control by GC-MS analysis at 18 week. (D)
KEGG enriched pathways of changed fecal metabolites by GC-MS in F1 Female Early-VDD vs.

F1 Female Control at 18 week.
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Fig. S14. Changes of metabolites and metabolic pathways in feces of F2 male rats at 8 week.
Heatmap of changed fecal metabolites in F2 Male Early-VDD and F2 Male Control at 8 week. (B)
KEGG enriched pathways of changed fecal metabolites in F1 Male Early-VDD vs. F1 Male

Control at 8 week. (C) Correlation of fecal metabolites and gut microbiota.
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Fig. S15. Changes of metabolites and metabolic pathways in feces of F2 female rats at 8 week.
(A) Heatmap of changed fecal metabolites in F2 Female Early-VDD and F2 Female Control by
LC-MS analysis at 8 week. (B) KEGG enriched pathways of changed fecal metabolites by LC-MS
in F2 Female Early-VDD vs. F2 Female Control at 8 week. (C) Heatmap of changed fecal
metabolites in F2 Female Early-VDD and F2 Female Control by GC-MS analysis at 8 week. (D)
KEGG enriched pathways of changed fecal metabolites by GC-MS in F2 Female Early-VDD vs.
F2 Female Control at 8 week.
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Fig S16 Redundancy analysis between intestinal flora and the indicators of glucose
tolerance at the genus level. Notes: fasting blood glucose levels (GLU1), blood insulin
(Amount of Insulin), insulin resistance (IR), AUC Area under the curve of glucose
tolerance test.



