Electronic Supplementary Material (ESI) for Food & Function. This journal is © The Royal Society of Chemistry 2023

Supplementary information

Table S1. Maintenance feed for Co60 irradiated experimental mice.

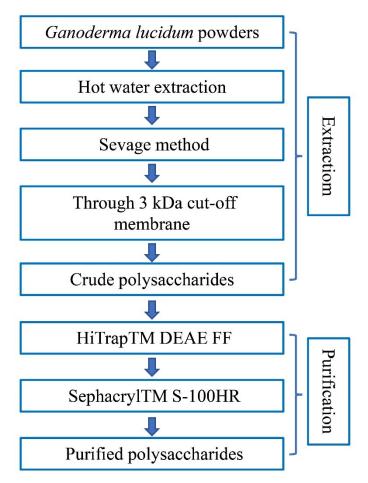
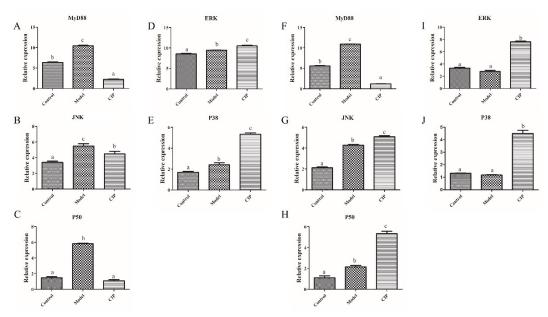
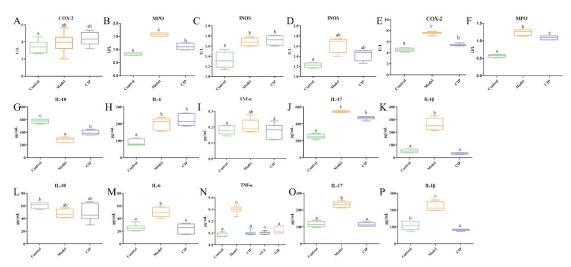
	1					
Raw material	Proportion					
Corn						
Middling						
Wheat	Cereal raw materials account for 80%					
Alfalfa grass						
Soybean meal						
Peruvian fish meal						
American Chicken Meal	Animal protein accounts for 10%					
Animal premix①						
Gluten						
Calcium hydrogen phosphate						
Stone powder	Small additive 10%					
Salad oil						
Feed grade sodium chloride						
Feed grade magnesium oxide						
Total	100%					

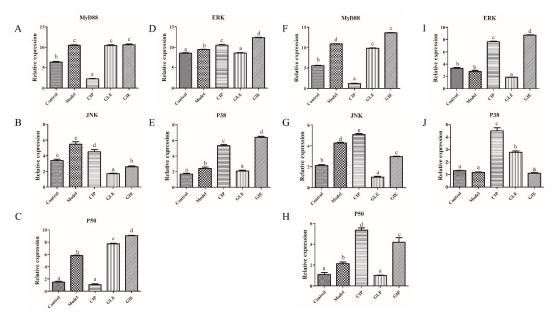
Table S2. Primer sequences used for qPCR.

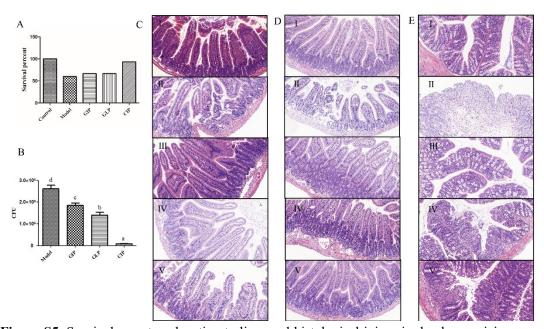
Gene	Sequence (5' to 3')						
	Forward	Reverse					
GAPDH	GACAAGCTTCCCGTTCTCAG	GAGTCAACGGATTTGGTCGT					
MYD88	CAGTGGTGGACAGTTGTGGAC	GAAAGCATCAAAGGTCTCAGGTG					
JUK	CTCAGCATCCATCGTCTTCG	AGTCGGATCTGTGGACATTGA					
P50	CTGGGTTCCTGCTGTCATTAAAA	GCACAACTTACAGTAGATGGCTAGAAA					
ERK	GGTTGTTCCCAAATGCTGACT	CAACTTCAATCCTCTTGTGAGGG					
P38	GGCTCGGCACACTGATGAT	TGGGGTTCCAACGAGTCTTAAA					

Table S3. Death of mice injected with the strain *S*. Typhimurium in 9 days.

Group	Injection	The	The number of deaths						Cumulative			
	concentration	number of	1d	2d	3d	4d	5d	6d	7d	8d	9d	mortality (
	(CFU/mL)	mouse in										%)
		experiment										
S.	1×10 ⁴	6	0	0	0	0	0	0	0	0	1	16.67%
Typhimuriu	1×10 ⁵	6	0	0	0	0	0	0	0	1	1	33.33%
m	1×10^{6}	6	0	0	0	0	0	0	1	2	0	50%
	1×10^{7}	6	0	0	0	0	0	2	2	2	0	100%
	1×10^{8}	6	0	0	0	0	2	1	2	1	0	100%
	1×10^9	6	0	0	0	0	3	1	2	0	0	100%


Figure S1. GLP preparation flow chart.


Figure S2. Inflammatory pathway-related factors in jejunum and colon of ciprofloxacin therapy in S. Typhimurium infection. (A) MyD88 in colon, (B) JNK in colon, (C) P50 in colon, (D) ERK in colon, (E) P38 in colon, (F) MyD88 in jejunum, (G) JNK in jejunum, (H) P50 in jejunum, (I) ERK in jejunum (J) P38 in jejunum. n = 4 mice per group, bars with different letters were considered significant at p < 0.05.

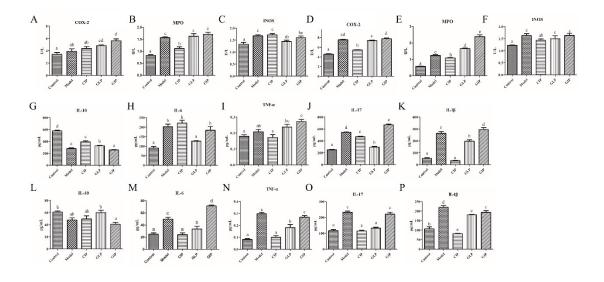

Figure S3. Inflammation level in jejunum and colon of ciprofloxacin therapy in *S*. Typhimurium infection. (A) COX-2 in colon, (B) MPO in colon, (C) INOS in colon, (D) INOS in jejunum, (E) COX-2 in jejunum, (F) MPO in jejunum, (G) IL-10 in colon, (H) IL-6 in colon, (I) TNF-α in colon, (J) IL-17 in colon, (K) IL-1β in colon, (L) IL-10 in jejunum, (M) IL-6 in jejunum, (N) TNF-α in jejunum, (O) IL-17 in jejunum, (P) IL-1β in jejunum. n = 6 mice per group, bars with different letters were considered significant at p < 0.05.

Figure S4. Inflammatory pathway-related factors in jejunum and colon of GIE and GLE treatment in S. Typhimurium infection. (A) MyD88 in colon, (B) JNK in colon, (C) P50 in colon, (D) ERK in colon, (E) P38 in colon, (F) MyD88 in jejunum, (G) JNK in jejunum, (H) P50 in jejunum, (I) ERK in jejunum (J) P38 in jejunum. n = 4 mice per group, bars with different letters were considered significant at p < 0.05.

Figure S5. Survival rare, translocation to liver and histological injury in duodenum, jejunum and colon of GIP and GLP treatment in S. Typhimurium infection. (A) Survival rare with S. Typhimurium infection. (B) Translocation to liver with S. Typhimurium infection. (C) Histological injury in duodenum, I, duodenum in control, II, duodenum in model, III, duodenum in ciprofloxacin, IV, duodenum in GIP, V, duodenum in GLP. (D) Histological injury in jejunum, I, jejunum in control, II, jejunum in model, III, jejunum in ciprofloxacin, IV, jejunum in GIP, V, jejunum in GLP. (E) Histological injury in colon, I, colon in control, II, colon in model, III, colon in ciprofloxacin, IV, colon in GIP, V, i colon in GLP. n = 6 mice per group, bars with different letters were considered significant at p < 0.05.

Figure S6. Inflammation level in colon and jejunum of GIP and GLP treatment in *S.* Typhimurium infection. (A) COX-2 in colon, (B) MPO in colon, (C) INOS in colon, (D) COX-2 in jejunum, (E) MPO in jejunum, (F) INOS in jejunum, (G) IL-10 in colon, (H) IL-6 in colon, (I) TNF-α in colon, (J) IL-17 in colon, (K) IL-1β in colon, (L) IL-10 in jejunum, (M) IL-6 in jejunum, (N) TNF-α in

jejunum, (O) IL-17 in jejunum, (P) IL-1 β in jejunum. n = 6 mice per group, bars with different letters were considered significant at p < 0.05.