Supplementary Information

2	
3	Garlic-derived exosome-like nanovesicles alleviate dextran sulphate
4	sodium-induced colitis in mice via TLR4/MyD88/NF- <i>k</i> B pathway and
5	gut microbiota modulation
6	
7	Zhenzhu Zhu*a, Liuyue Liaoa, Mingwei Gaoa, Qin Liua
8	^a College of Food Science and Engineering, Nanjing University of Finance and
9	Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety,
10	Nanjing 210023, People's Republic of China
11	
12	Supplemental materials and methods
13	Analysis of purity, size, and zeta potential of GENs
14	The size and number of GENs (12.6 mg/mL) were measured by nanoparticle
15	tracking analysis (NTA) on the Nanosight NS300 (Malvern Instruments, Malvern, UK).
16	The hydrodynamic size and polydispersity index (PDI) of GENs were assessed by
17	dynamic light scattering (DLS) on the Nano ZS (Malvern Instruments, Malvern, UK).
18	Zeta potential of GENs was determined by electrophoretic light scattering on a
19	Zetasizer Nano ZS (Malvern Instruments, Malvern, UK).
20	Cellular uptake and cell viability assays
21	Caco-2 cells were cultured in Dulbecco's modified eagle medium (DMEM, Gibco,
22	Grand Island, NY, USA), supplemented with penicillin-streptomycin solution (Beijing
23	Solarbio Science & Technology Co., Ltd., Beijing, China) and fetal bovine serum (20%,

24 Gibco, Grand Island, NY, USA) at 37 °C in a humidified atmosphere containing 5%

CO₂. Caco-2 cells were seeded in 6-well plates for 24 h. Before assay, GENs were 25 labeled with PKH67 (Beijing Baiaolaibo Technology Co., Ltd, Beijing, China) for 15 26 min at 37 °C and for 15 min at 4 °C. For uptake assay, Caco-2 cells seeded in φ 15mm 27 glass bottom dish (2×10⁵ cells/plate) were incubated with PKH67-labeled GENs (20 28 μ g/mL) for 2, 4, and 6 h, respectively. Afterward, the cells were washed with PBS, 29 cellular nuclei were stained with Hoechst 33342. Finally, cells were imaged using 30 Eclipse C1 fluorescence microscopy (Nikon, Japan). The excitation wavelengths of 31 PKH67 and Hoechst 33342 (Shanghai Byotime Biotechnology Co., Ltd., Shanghai, 32 China) were set at 490 nm and 350 nm, respectively. 33

For cell viability assay, Caco-2 cells were seeded in 96-well plates at a density of 34 5×10^4 cells/well for 48 h. Then, Caco-2 cells were treated with GENs (1, 10, 20, 40, 80 35 μ g/mL) with or without LPS (1 μ g/mL) stimulation for 24 h. 3-(4,5-dimethythiazol-2-36 yl)-2,5-diphenyl tetrazolium bromide (MTT, Shanghai Byotime Biotechnology Co., 37 Ltd., Shanghai, China) (20 µL) was added and incubated for 4 h. Next, 38 dimethylsulfoxide (DMSO, 150 µL) was added to resolve the formazan. The optical 39 density (OD) value at 490 nm was measured by using an ELISA microplate reader 40 (SpectraMax M2, USA) after shaking for 15 min. The cell viability was calculated by 41 the formula: cell viability rate (%) = $(OD_{490, drug} - OD_{490, blank})/(OD_{490, control} - OD_{490, drug})$ 42 _{blank})×100%. 43

44 Lucifer yellow (LY) assay

45 Caco-2 cells were treated with GENs (0, 1, 5, 10 μ g/mL) and LPS (1 μ g/mL) for 46 24 h. LY was added to the apical chambers, and the mixture was incubated for 2 h. The 47 culture media from the basolateral chambers were then collected, and the fluorescence 48 intensity of samples was measured by using a multifunctional microplate reader. The 49 excitation and emission wavelengths of LY were set at 428 nm and 540 nm, 50 respectively. Apparent permeability coefficient (Papp) in the Caco-2 monolayer cells

- 51 was calculated as previously reported.¹
- 52

53 Supplemental Figures and Tables

55 Fig. S1 The establishment of DSS-induced mice colitis model and the administration

56 strategy of GENs (20, 100, 500 mg/kg).

57

Fig. S2 Characterization of GENs. (A) Suspension of GENs in the sucrose gradients
(30-45%) after ultracentrifugation. (B) The size distribution, (C) hydration diameter
distribution, and (D) zeta potential of GENs. (E) Agarose gel of total RNAs.

64 Fig. S3 Cellular uptake of GENs (20 $\mu g/mL)$ labeled by PKH67 (green) after co-

65 incubating with Caco-2 cells for 2, 4, 6 h at 37 °C. The nuclei were labeled by Hoechst

- $66\ \ 33342$ (blue), the scale bar was $200\ \mu m.$
- 67

69 Fig. S4 The cell viability of Caco-2 cells after GENs treatment with or without LPS (1

70 µg/mL) stimulation. **p < 0.01, ***p < 0.001, ****p < 0.0001, GENs group *vs* LPS group.

73 Fig. S5 Survival rate of C57BL/6J mice in the control, DSS, L-GENs, M-GENs, and

75

Fig. S6 Photos of colon tissues in the normal mice (control), M-GENs treated C57BL/6J
mice at the 15th day, DSS treated C57BL/6J mice, DSS + L-GENs treated, DSS + MGENs treated and DSS + H-GENs treated mice at the 15th day. The length of colon
tissue was measured by a rule.

Fig. S7 The rarefaction curve (A), Shannon curve (B) and species accumulation curve
(C) of cecal contents, the relative quantitation of domain bacteria at the family level
(D).

88 Fig. S8 (A) Distribution of gut microbiota at the genus level. (B) The relative 89 abundance of *Helicobacter*, *Escherichia-Shigella* and *Akkermansia*. ${}^{\#}p$ <0.05, 90 ${}^{\#\#\#}p$ <0.001, ${}^{\#\#\#\#}p$ <0.0001, DSS group *vs* control; ${}^{*}p$ <0.05, ${}^{**}p$ <0.01, DSS + GENs group 91 *vs* DSS group.

Fig. S9 Taxonomic cladogram of the main different microbiota by linear discriminant
analysis effect size (LEfSe). Control group (red), DSS group (green blue), DSS + LGENs group (blue), DSS + M-GENs group (purple) and DSS + H-GENs group (cyan).
Yellow color represented that the taxa having no significant difference.

			Stool
Score	Weight loss (%)	Bloody stools	consistency
0	None	Normal	None
1	1-5	-	-
2	5-10	Soft and shaped	Slight bleeding
3	10-15	-	-
4	>15	Diarrhea	Gross bleeding

Table S1. Disease activity index (DAI)²

Feature graded	Grade	Description
inflammation	0	normal
	1	minimal infiltration of lamina propria, focal to multifocal
	2	mild infiltration of lamina propria, multifocal, mild gland separation
	3	moderate to mixed infiltration, multifocal with minimal edema
	4	marked mixed infiltration into submucosa and lamina propria with extensive areas of gland separation, enlarged Peyer's patches, edema
epithelium	0	normal
	1	minimal: focal mucosal hyperplasia
	2	mild: multifocal tufting of rafts of epithelial cells with increased numbers of goblet cells
	3	moderate: multifocal to locally extensive epithelial attenuation or erosion with goblet cell hyperplasia
	4	marked: locally extensive to subtotal erosion or ulceration
glands	0	normal
C	1	minimal: rare gland dilatation
	2	mild: multifocal gland dilatation
	3	moderate: multifocal gland dilatation with abscessation and occasional loss of glands
depth of lesion	0	none
	1	mucosa
	2	mucosa and submucosa
	3	transmural
extent of section affected	0	none
	1	minimal: <10%
	2	mild: 10-25%
	3	moderate: 26–50%
	4	marked: >50%

Gene	Primer sequence (5'-3')
β -actin-Forward	TCAGCAAGCAGGAGTACGATG
β -actin-Reverse	AACGCAGCTCAGTAACAGTCC
TLR4-Forward	ACTTCCATCCAGTTGCCTTCTTGG
TLR4-Reverse	TTAAGCCTCCGACTTGTGAAGTGG
MyD88-Forward	TCTCGGACTCCTGGTTCTGCTG
MyD88-Reverse	TCTCGGACTCCTGGTTCTGCTG

Table S4. Basic parameters of garlic-derived exosome-like nanovesicles

Parameters (unit)	Value	Method
Yield (p/mL)	$(2.86 \pm 0.15) \times 10^9$	NTA
Particle-to-protein ratio (p/µg)	$(8.17 \pm 0.43) \times 10^7$	-
Particle size/nm	160.20 ± 3.50	NTA
Hydration diameter/nm	229.33 ± 3.26	DLS
Zeta/mV	-10.07 ± 0.78	-
PDI	0.21 ± 0.00	-

No.	Class	Abbreviation	Percentage/%
1	phosphatidylcholine	РС	27.6780
2	acyl hexosyl sitosterol ester	AcHexSiE	16.2776
3	sphingosine	SPH	15.2774
4	triglyceride	TG	10.3309
5	ceramide	Cer	6.5079
6	phosphatidylethanolamine	PE	5.9138
7	wax ester	WE	4.1815
8	diacylglycerol	DG	3.9531
9	phosphatidylethanol	PEt	2.5091
10	acyl hexosyl campesterol ester	AcHexCmE	2.2218
11	acyl hexosyl stigmasterol ester	AcHexStE	1.3953
12	Hexosylceramide	Hex1Cer	0.7897
13	acyl hexosyl zymosterol ester	AcHexZyE	0.4791
14	monoglyceride	MG	0.4393
15	phospholipids alcohol	PA	0.4190
16	acyl hexosyl cholesterol ester	AcHexChE	0.2632
17	lysophosphatidylcholine	LPC	0.2521
18	phosphatidylglycerol	PG	0.2481
19	(O-acyl)-1-hydroxy fatty acid	OAHFA	0.2354
20	monogalactosyldiacylglycerol	MGDG	0.1686
21	phosphatidylinositol	PI	0.1355
22	phosphatidylserine	PS	0.1070
23	lysophosphatidylethanolamine	LPE	0.0762
24	digalactosyldiacylglycerol	DGDG	0.0699
25	N-Acylethanolamine	AEA	0.0387
26	lysobisphosphatidic acid	LBPA	0.0319

107 Table S5. The class and percentage of lipids in garlic-derived exosome-like108 nanovesicles by the lipidomic analysis.

N	TI 4°C ID 4 '	Protein	A • NT 1	Molecular
N0.	Identified Proteins	Existence ^a	Accession Number	Weight
1	Acetolactate synthase	2	A0A3S7QFS2_ALLF I	71 KDa
2	Adenosylhomocysteinase (Fragment)	2	Q9SDP1_ALLCE	34 KDa
3	Aldehyde dehydrogenase (Fragment)	2	Q8RVW3_ALLCE	30 KDa
4	Alliinase (Fragment)	3	Q9SW86_ALLSA	33 KDa
5	Alliinase	2	A0A3G2I868_ALLP O	55 KDa
6	Aquaporin 1	2	Q9M4T0_ALLCE	31 KDa
7	Aquaporin 2	2	Q9M4S9_ALLCE	31 KDa
8	Aquaporin plasma in insic protein 1	2	A0A0D4CZJ2_ALLS A	31 KDa
9	Aquaporin plasma in insic protein 2	2	A0A0D4CZX5_ALL SA	31 KDa
10	Aquaporin plasma in insic protein 3	2	A0A0D4CYY1_ALL SA	31 KDa
11	ATP synthase subunit alpha (Fragment)	3	A1XIV0_ALLCE	46 KDa
12	ATP synthase subunit beta chloroplastic	3	A0A6B9VW32_9AS PA	54 KDa
13	ATP-dependent Clp protease proteolytic subunit	3	A0A6B9VXS4_9ASP A	23 KDa
14	Beta-actin	2	A0A345F2T1_ALLC E	42 KDa
15	Bifunctional 6(G)- fructosyltransferase/2 1- fructan:2 1-fructan 1- fructosyltransferase	1	P92916 GFT_ALLCE	69 KDa
16	Cell division cycle protein 48 homolog	2	G5EIQ1_ALLCE	90 KDa
17	Cysteine synthase	2	Q9MAZ2_ALLTU	34 KDa
18	Cysteine synthase	2	Q3L195_ALLSA	36 KDa
19	Cytochrome oxiIIdase subunitII (Fragment)	4	A0A059XHT2_9ASP A	10 KDa
20	Defensin 3	2	A0A7D5T120_ALLS A	8 KDa
21	Defensin 5	2	A0A7D5NM87_ALL CE	9 KDa

109 Table S6. The affiliation of proteins in garlic-derived exosome-like nanovesicles by
110 the proteomic analysis.

No.	Identified Proteins	Protein Existenceª	Accession Number	Molecula r Weight
22	Defensin 5	4	A0A7D5NJX8_ALL CE	9 KDa
23	DnaJ protein homolog	2	P42824 DNJH2_ALL PO	47 KDa
24	Farnesyl diphosphate synthase	2	F6KUJ4_ALLSA	40 KDa
25	Flavonoid glucosyl- transferase	2	Q7XJ49_ALLCE	53 KDa
26	Glutamatecysteine ligase	2	Q8W1X9_ALLCE	56 KDa
27	Glutathione transferase	2	A4PIV6_ALLCE	24 KDa
28	Glutathione-S-transferase	2	A0A5J6YHL6_ALLS A	26 KDa
29	Glyceraldehyde-3-phosphate dehydrogenase (Fragment)	3	D2KCJ8_ALLSC	19 KDa
30	Glyceraldehyde-3-phosphate dehydrogenase (Fragment)	3	A0A076V7J0_ALLC E	21 KDa
31	Glyceraldehyde-3-phosphate dehydrogenase GAPC2 (Fragment)	3	A0A2S1IZX9_ALLP O	21 KDa
32	Glvoxalase	2	F2ZC02 ALLCE	33 KDa
33	GTP-Binding Nuclear Protein Ran-2	2	A9X4K0_ALLSA	25 KDa
34	Heat shock protein 70 homologue (Fragment)	2	Q43372_ALLCE	15 KDa
35	Heat shock protein 70	2	H2CLX1_ALLSA	40 KDa
36	Histone H4 (Fragment)	2	Q38686_ALLCE	7 KDa
37	I lectin (Fragment)	1	Q38789_ALLSA	33 KDa
38	II lectin (Fragment)	1	Q38783_ALLSA	17 KDa
39	Lectin (Fragment)	4	K4P0T2_ALLSA	32 KDa
40	Lactoylglutathione lyase	2	F5HSC6_ALLCE	21 KDa
41	Late embryogenesis abundant protein lea14-a	2	H2CLX2_ALLSA	17 KDa
42	Lipoxygenase	2	A0A1J0I8W4_ALLC E	99 KDa
43	Molecular chaperone DjA2	2	Q0GLI7_ALLPO	47 KDa
44	Peptidylprolyl cis-trans isomerase	2	P34887 CYPH_ALLC E	16 KDa
45	Peroxidase ATP17a-like protein	2	H2CLX6_ALLSA	21 KDa
46	Phospholipase D alpha (Fragment)	2	C7SAX4_ALLPO	21 KDa
47	Proteasome subunit alpha-3 (Fragment)	2	Q6U835_ALLSA	16 KDa
48	Protein TIC 214	3	A0A4Y5X071_9ASP A	210 KDa

N-	Identified Durations	Protein	A Normalian	Molecula
INO.	Identified Proteins	Existence ^a	Accession Number	r Weight
49	Putative cold-regulated protein	2	H2CLX4_ALLSA	26 KDa
50	Putative progesterone 5-beta-	2	A0A0M4BW04_ALL	44 VD-
30	reductase	Z	UR	44 KDa
51	Sucrose:sucrose 1-fructosyl	2	A0A125SXW5_ALL	70 VDa
51	transferase 1-SST	Z	CE	/0 KDa
50	Sucrose:sucrose 1-fructosyl	2	ONDM7 ALLSA	70 VDa
32	transferase 1-SST	Z	Q8LPMI/_ALLSA	/0 KDa
52	Sucrose-phosphate synthase	2	A SIV 15 ALL CE	114 VDa
55	(Fragment)	Z	Aoik43_ALLCE	114 NDa
54	Superoxide dismutase	2		15 VDa
54	(Fragment)	Z	D211A0_ALLSA	13 KDa
55	Tau glutathione S-transferase	2	F2ZC01_ALLCE	26 KDa
56	trypsin inhibitor	2	Q8RVY7_ALLCE	11 KDa
57	Tubulin beta chain	2	A0A345F2T2_ALLC F	50 KDa
58	Uncharacterized protein	2	H2CLX8 ALLSA	22 KDa
20	Unspecific 9/13 divinyl ether	-		22 1104
59	synthase	2	Q2WE96_ALLSA	53 KDa
60	Vacuolar H+-ATPase catalytic	2	OOSDDO ALLCE	20 V Da
00	subunit (Fragment)	Z	Q95DP0_ALLCE	20 KDa
61	Vacuolar H+-ATPase catalytic	2	OOSDMO ALLCE	22 K Da
01	subunit (Fragment)	4	QJSDMU_ALLCE	22 KDa

^a Protein Existence. 1. Experimental evidence at protein level; 2. Experimental evidence at tran
level;3. Protein inferred from homology; 4. Protein predicted; 5. Protein uncertain. The raw file
was submitted to the established database by using the PEAKS Studio 8.5 software, and the
whole Allium of UniProt database was used for comparative search
(https://www.uniprot.org/taxonomy/4678). The filter parameters of result: Peptide FDR≥1%,
unique peptide≥1.

No.	Name	Sequence	Reads Count
1	han-miR3630-5p	GCAAGUGAUGAAGAACCA	16717
2	aof-miR166a	UCUCGGACCAGGCUUCAUUCC	971
3	ata-miR166c-3p	UCGGACCAGGCUUCAUUCCUU	748
4	sly-miR166c-3p	UCGGACCAGGCUUCAUUCCUC	684
5	ppt-miR894	UUCACGUCGGGUUCACCA	451
6	aof-miR159	UUUGGAUUGAAGGGAGCUCU	981
7	aof-miR396a	UUCCACGGCUUUCUUGAACUG	385
8	aof-miR166d	UCGGACCAGGCUUCAUUCCCC	165
9	aof-miR394	UUGGCAUUCUGUCCACCUCC	85
10	aof-miR396b	UUCCACAGCUUUCUUGAACUG	75
11	sly-miR168a-3p	CCUGCCUUGCAUCAACUGAAU	75
12	aof-miR390	AAGCUCAGGAGGGAUAGCGCC	40
13	aof-miR167b	UGAAGCUGCCAGCAUGAUCUGA	37
14	aof-miR166b	UCUCGGACCAGGCUUCAUUC	69
15	gma-miR482d-3p	UCUUCCCUACACCUCCCAUACC	31
16	eun-miR482a-3p	UCUUGCCAAUACCACCCAUGCC	28
17	lja-miR171c	UGAGCCGAAUCAAUAUCACUU	26
18	aof-miR536	UCGUGCCACGCUGUGUGCGUC	14
19	mes-miR156k	UUGACAGAAGAGAGAGAGAGCAC	11
20	aof-miR535	UGACAACGAGAGAGAGAGCACGC	12
21	cas-miR394	UUUGGCAUUCUGUCCACCUCC	9
22	aof-miR319a	UUGGACUGAAGGGAGCUCCCU	22
23	tae-miR9777	AGCAACUUAUCUGAGCAC	9
24	cas-miR159b-3p	UUUGGAUUGAAGGGAGCUCUU	7
25	gso-miR1510a	UGUUGUUUUACCUAUUCCACC	12
26	aof-miR827	UUAGAUGGCCAUCAACAAACA	7

118 Table S7. The name, sequence and reads count of miRNAs in garlic-derived exosome-

119 like nanovesicles by microRNA sequencing^{*a*}.

No.	Name	Sequence	Reads Count
27	gso-miR3522b	UGAGACCAAAUGAGCAGCUGA	6
28	lja-miR1511-3p	AACCAGGCUCUGAUACCAUGA	7
29	aof-miR164	UGGAGAAGCAGGGCACGUGCA	8
30	vun-miR2118	UUGCCGAUUCCACCCAUUCCU	7
31	bra-miR158-3p	UUUCCAAAUGUAGACAAAGCA	8
32	gma-miR1510b-5p	AGGGAUAGGUAAAACAACU	8
33	aof-miR167c	UGAAGCUGCCAGCAUGAUCU	8
34	csi-miR166f-3p	UCGGACCAGGCUUCAUUCCCU	5
35	bdi-miR7717c-3p	GUUAGUGAUGAGAAAUAG	5
36	gso-miR1507b	UCUCAUUCCAUACAUCGUCUGA	6
37	csi-miR1515b-5p	UCAUUUUUGCGUGCAGUGAUCC	5
38	pab-miR11407a	AAACUCUGACGGCGCAAC	5
39	aof-miR319b	UUUGGACUGAAGGGAGCU	12
40	gma-miR2109-3p	GGAGGCGUAGAUACUCACACC	4
41	gma-miR1513b	UGAGAGAAAGCCAUGACUUAC	4
42	pab-miR156w	UUGACAGAAGAUAGAGGGCAC	5
43	cas-miR166a	GGAAUGUUGUCUGGCUCGU	8
44	cas-miR159a	UUUGGAUUGAAGGGAGCUCC	4
45	aqc-miR159	UUUGGACUGAAGGGAGCUCU	5
46	aof-miR168a	UUCGCUUGGUGCAGGUCGGGA	7
47	csi-miR393b-5p	UUCCAAAGGGAUCGCAUUGAUC	3
48	aof-miR156a	UGACAGAAGAGAGUGAGCAC	5
49	pab-miR396t	UUCCACGGCUUUCUUGAACUU	3
50	aof-miR160c	UGCCUGGCUCCCUGUAUGCCA	4
51	vca-miR167b-3p	AGAUCAUGUUGCAGUUUCAUC	4
52	gma-miR4412-5p	UGUUGCGGGUAUCUUUGCCUC	4
53	eun-miR482b-3p	UUUCCUAUUCCUCCCAUUCCA	3
54	aof-miR171c	UUGAGCCGCGUCAAUAUCUC	7

No.	Name	Sequence	Reads Count
55	osa-miR444c.1	UGUCUCAAGCUUGCUGCCU	4
56	gma-miR5372	UUGUUCGAUAAAACUGUUGUG	3
57	osa-miR5807	GGGCUGGGGUUAUGUGGC	3
58	cas-miR858	UUCAUUGUCUGUUCGACCU	2
59	bra-miR168a-3p	CCCGCCUUGUGUCAAGUGAAU	2
60	aly-miR4226	ACAACAUGAUCGAGCAAU	2
61	pab-miR396a-5p	UUCCACAGCUUUCUUGAACUA	2
62	bdi-miR166e-3p	CUCGGACCAGGCUUCAUUCCC	2
63	eun-miR482c-5p	GAGAUUCGAGCUACCGGAAGUCGUG	2
64	gso-miR2109	UGCGAGUGUCUUCGCCUCUGA	3
65	stu-miR1886g-5p	GAUGGACAAGGUUUGGACA	2
66	csi-miR396f-5p	UUCCACAGCUUUCUUGAACUU	2
67	gso-miR1509a	UUAAUCAAGGAAAUCACGGUCG	1
68	gma-miR1510a-3p	UGUUGUUUUACCUAUUCCACCC	2
69	gma-miR319q	UGGACUGAAGGGAGCUCCUUC	1
70	lus-miR159b	UUUGGAUUGAAGGGAGCUCUC	2
71	pvu-miR159a.2	CUUCCAUAUCUGGGGAGCU	4
72	sly-miR319c-3p	UUGGACUGAAGGGAGCUCCUU	2
73	mtr-miR166b	UCGGACCAGGCUUCAUUCCUA	1
74	ppt-miR166m	UCGGACCAGGCAUCAUUCCUU	1
75	ptc-miR166p	UCGGACCAGGCUCCAUUCCUC	1
76	cpa-miR167c	UGAAGCUGCCAGCAUGAUCUU	1
77	bra-miR168c-5p	GCGCUUGGUGCAGGUCGGGAC	2
78	bdi-miR169d	UAGCCAAGAAUGACUUGCCUC	1
79	lus-miR171j	UGAUUGAGCCGCGUCAAUAUC	2
80	ppe-miR171d-5p	CGUGAUAUUGGUUCGGUU	2
81	zma-miR2275a-5p	GUUGGAGCAAAGCAAACC	1
82	ppt-miR390c-3p	CGCUGUCCGAUUUGAGCA	1

No.	Name	Sequence	Reads Count
83	stu-miR399i-3p	UGCCAAAGGAGAGUUGCCCUA	1
84	gra-miR482	CUUCCAAUUCCUCCCAUU	1
85	gma-miR5380b	GAAAAUGAAGAUGGAGGA	1
86	sbi-miR5564a	GGAAGAAUUUGUCGAACA	2
87	gma-miR5670b	CACAUCAUACCAUAUUUGCUUC	1
88	nta-miR6025d	GAACAAUUGAAUAACUCUA	1
89	bdi-miR827-5p	GUUUUGUUGGUUGCAUCU	1
90	aof-miR12149	GCUUCUUUGUCAUACUUCU	1
91	aof-miR156b	UUGACAGAAGAUAGAGAGCAC	1
92	aof-miR166c	UCGGACCAGGCUUCAUCCCCC	1
93	aof-miR168b	UCGCUUGGUGCAGGUCGGG	2
94	aof-miR171b	UUGAGCCGCGCCAAUAUCACG	2
95	aof-miR172	AGAAUCUUGAUGAUGCUGCAUU	2
96	ath-miR8175	UCCCUGGCAACGGCGCCA	1
97	bdi-miR5057	AUUUCAAAUCGUUUGACA	1
98	bdi-miR845	GCUCUGAUACCAAUUGUU	1
99	bra-miR5721	AAAAAAGGAGUGAGAAUGGA	1
100	cas-miR166f-3p	UCGGACCAGGCUUCAUUCCCCU	1
101	cme-miR854	UGAGGAUGAGGAGGAGGA	2
102	csi-miR159c-3p	CUUGGACUGAAUGGAGCUCCC	1
103	csi-miR169r-5p	CAGCCAAGGAUGACUUGCC	2
104	csi-miR171f-5p	UAUUGGCCUGGUUCACUCAGA	1
105	csi-miR395c-3p	CUGAAGUGUUUGGGGGAACUC	1
106	eun-miR167c-3p	GAUCAUGUGGCUGCUUCACC	1
107	eun-miR482a-5p	CAUGGGUCGUUUGGUGAGA	1
108	fve-miR1511	CUAGCUCUGAUACCAUGU	1
109	fve-miR156e	UUGACAGAAGAGAGUGAGCAC	2
110	fve-miR159b	AUUGGAUUGAAGGGAGCUCU	1

No.	Name	Sequence	Reads Count
111	fve-miR162-3p	UCGAUAAAACUCUGCAUCCAG	1
112	fve-miR2109	GUGCAGUGUCUUACUCUG	1
113	fve-miR530	UGCAUUUGCACCUGCACCU	1
114	gma-miR399k	UGCCAAAGGAGAUUUGCCCUG	1
115	gma-miR4994-3p	GACAUCCUUGAGUAAACA	2
116	gma-miR5772	AGAAGUCAGUUAGAGGAG	1
117	lja-miR166-3p	CUUCGGACCAGGCUUCAUUCC	1
118	mtr-miR5247	CAGGAGCAAAGCAUCUGA	1
119	mtr-miR5740	GAAAGAAGAACAUUUGGA	1
120	pab-miR11569	UGCUCUAUGUCAUGGAUC	1
121	pab-miR162a	UCGAUAAACCUCUGCAUCCGG	2
122	pab-miR164a	CACGUGCUCCCCUUCUCC	1
123	pab-miR858b	UUCGUUGUCUGUUCGACCUUG	1
124	peu-miR2916	GGGGCUCGAAGUCGAUCA	1
125	sly-miR159b	UUGGAAAGAGGUGCUCUA	1
126	tae-miR9773	UUUGUUUUUAUGUUAUUU	1
127	vca-miR10202b-5p	AAUAAUCUGUUGGUUCAAACC	2

^a Filtered clean read from 18 nt to 36 nt in length and perform deduplication to obtain unique reads for subsequent analysis. The obtained unique reads were identified against known plant mature miRNAs in the miRBase22 database (<u>http://www.mirbase.org/</u>)⁵ using the criterion of a maximum of two mismatches. Sequences that are not annotated with any information use mireap (v2.0) for new miRNA prediction analysis.

126	Fable S8. MiRNAs that were predicted to target human genes related inflammator	У
127	[°] actors ^a	

	C	Length	Predicted	
MIKINA	Sequence	(nt)	target gene	
			TLR4, MyD88, NFKB1,	
1 'D2(20 5	GCAAGUGAUGAAGA ACCA		CHUK, claudin1, TJP1(ZO-	
nan-m1R3630-5p		18	1), IL-17RA, IL6R, IFN-γ, IL-	
			18, TNFAIP8, TNFAIP8L1	
			TLR4, TJP1(ZO-1), IL17A,	
sly-miR168a-3p	CCUGCCUUGCAUCA	21	IL6R, TNFAIP8, TNFAIP2,	
	ACUGAAU		TNFAIP1	
	UGUUGUUUUACCUA		TLR4, CHUK, IRAK3,	
gso-miR1510a	UUCCACC	21	IRAK4	
	UUGACAGAAGAGAG		TLR4, IL17RA, IL-1 β ,	
mes-miR156k	AGAGCAC	21	IRAK3	
	UUUCCAAAUGUAGA 21 CAAAGCA		TLR4, TJP1 (ZO-1), claudin1,	
bra-miR158-3p		21	IL6R, TNFAIP8, TNFAIP6,	
			IRAK3	
	UCUUCCCUACACCUC iR482d-3p CCAUACC	22	TLR4, claudin 1, IL6R,	
gma-miR482d-3p			IL17RA, TNFAIP8,	
			TNFAIP3, IRAK4	
	UUUGGAUUGAAGGG	20	TLR4, MyD88, CHUK,	
aof-miR159			claudin 1, TNFAIP8L3,	
	AGCUCU		IRAK2	
	UGAAGCUGCCAGCA		MyD88, IKBKB, IL6R.	
aof-miR167b		22		

30 factors ^a (Continue	d)		
MIDNA	Sequence	Length	Predicted
IVIININA		(nt)	target gene
	UGAAGCUGCCAGC	20	MyD88, IKBKB, occludin,
a01-m1R16/c	AUGAUCU		TNFAIP8, IRAK3
(' D 200	AAGCUCAGGAGGG	21	TLR4, occludin, IL17RA, IL6R,
aof-m1R390	AUAGCGCC		TNFAIP8L3
	UUGGCAUUCUGUC	20	TLR4, IL6R, IL17RA, TNFAIP8,
aoi-mik394	CACCUCC		TNFAIP1, TNFAIP3
D 1(()	UCUCGGACCAGGC	21	II. (D
a01-m1K166a	UUCAUUCC		IL-0K
		21	TLR4, CHUK, TJP1(ZO-1),
aof-miR396b			IL6R, TNFAIP8, TNFAIP8L1,
	UUGAACUG		TNFAIP1
	UCUUGCCAAUACC	22	TLR4, IL6R, IL17RA, TNFAIP8,
eun-mik482a-3p	ACCCAUGCC		TNFAIP3
D 004	UUCACGUCGGGUU	18	
ррі-тік 894	CACCA		1 LK4, 1L0K

129 Table S8. MiRNAs that were predicted to target human genes related inflammatory130 factors^a (Continued)

gma-miR1510b-5p 19 TLR4, IL17RA, IL6ST AACAACU

AGGGAUAGGUAA

131 ^a Sequence information on human mRNAs was collected from the ensembl database

132 (<u>http://asia.ensembl.org/Homo_sapiens/Info/Index;</u>). Miranda (v3.3a) was used in predicting
133 potential human target genes of miRNAs of GENs sample.

TLR4: toll like receptor 4; MyD88: myeloid differentiation primary response gene 88; 134 NFKB1:nuclear factor kappa B subunit 1; CHUK: component of inhibitor of nuclear factor kappa 135 B kinase complex; IKBKB: inhibitor of nuclear factor kappa B kinase subunit beta; TJP1(ZO-1): 136 137 tight junction protein 1; IL-6R: interleukin 6 receptor; IL6ST: interleukin 6 signal transducer; IL-138 1β: interleukin 1 beta; IL-17RA: interleukin 17 receptor A; IRAK3/4: interleukin 1 receptor 139 associated kinase 3/4; TNFAIP1/2/3/6/8: TNF alpha induced protein 1/2/3/6/8TNFAIP8L1: TNF alpha induced protein 8 like 1; TNFAIP8L1/3: TNF alpha induced protein 8 like 1/3; IFNGR2: 140 interferon gamma receptor 2; IFN-y: interferon gamma 141

- 142 Table S9. The sequences of han-miR3630-5p mimic, negative control mimic, wild type
- 143 (WT) and mutant (MUT) of 3' UTR fragment of TLR4

Name	Base sequences		
	GCAAGUGAUGAAGAACCA		
han-miR-3630-5p mimic	UGGUUCUUCAUCACUUGC		
	UCACAACCUCCUAGAAAGAGUAGA		
negative control mimic	UCUACUCUUUCUAGGAGGUUGUGA		
	GAGCTCCTTTGAGGCTCAGGTCTTAATTCATGAAA		
	Т		
	GGAGGTAATAATACCTTGTTGGCAGA <mark>C</mark> C <mark>TCACTTG</mark>		
TLR4-WT	G		
	TTAAAATGATAATGTTGATAGTTACAATAGTTACA		
	TT		
	TAATTGATCAATTGTTTTATGCTCGAG		
	GAGCTCCTTTGAGGCTCAGGTCTTAATTCATGAAA		
	Т		
	GGAGGTAATAATACAGGTTTGGCAGA <mark>A</mark> C <mark>GACAGG</mark>		
TLR4-MUT	T		
	GTTAAAATGATAATGTTGATAGTTACAATAGTTAC		
	AT		
	TTAATTGATCAATTGTTTTATGCTCGAG		

144 Blue: putative han-miR-3630-5p binding sites in TLR4 3'UTR

145 Yellow: mutant han-miR-3630-5p binding sites inTLR4 3'UTR

146

148 **Reference**

- ¹ P. Palumbo, U. Picchini, B. Beck, J. van Gelder, N. Delbar and A. DeGaetano, A general approach to the apparent permeability index, *J. Pharmacokinet. Pharmacodyn.*, 2008, **35**, 235–248.
- ² H. S. Cooper, S. N. Murthy, R. S. Shah and D. J. Sedergran, Clinicopathologic study of dextran sulfate sodium experimental murine colitis, *Lab Invest.*, 1993, **69**, 238–249.
- ³ F. Shen, J. Feng, X. Wang, Z. Qi, X. Shi, Y. An, Q. Zhang, C. Wang, M. Liu, B. Liu and L. Yu, Vinegar treatment prevents the development of murine experimental colitis via inhibition of inflammation and apoptosis, *J. Agric. Food Chem.*, 2016, **64**, 1111–1121.
- ⁴ a) C. Cao, B. Zhu, Z. Liu, X. Wang, C. Ai, G. Gong, M. Hu, L. Huang and S. Song, An arabinogalactan from Lycium barbarum attenuates DSS-induced chronic colitis in C57BL/6J mice associated with the modulation of intestinal barrier function and gut microbiota, *Food Funct.* 2021, **12**, 9829–9843. b) H. Hao, X. Zhang, L. Tong, Q. Liu, X. Liang, Y. Bu, P. Gong, T. Liu, L. Zhang, Y. Xia, L. Ai and H. Yi, Effect of extracellular vesicles derived from Lactobacillus plantarum Q7 on gut microbiota and ulcerative colitis in mice, *Front Immunol.* 2021, **12**, 777147. c) G. Huang, Z. Wang, G. Wu, R. Zhang, L. Dong, F. Huang, M. Zhang and D. Su, Lychee (Litchi chinensis Sonn.) pulp phenolics activate the short-chain fatty acid-free fatty acid receptor anti-inflammatory pathway by regulating microbiota and mitigate intestinal barrier damage in dextran sulfate sodium-induced colitis in mice, *J. Agric. Food Chem.*, 2021, **69**, 3326–3339.

⁵ S. Griffiths-Jones, The microRNA Registry, *Nucleic Acids Res.*, 2004, **32**, D109–111.