Title: Carbohydrate supplementation retains intestinal barrier and ameliorates bacterial translocation in an antibiotic-induced mice model

Supplementary information

Author: Yuan Zhang^{1,2}, Waleed A.S. Aldamarany^{1,3}, Liling Deng⁴, Geng Zhong^{1,2,*} Author Affiliation:

1 College of Food Science, Southwest University, Chongqing, 400715, China

2 Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing, 400715, China

3 Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University (Assiut Branch), Assiut 71524, Egypt

4 Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China

Corresponding author: Geng Zhong

Postal address: College of Food Science, Southwest University, Beibei District, Chongqing, 400715, P.R.China. E-mail address: <u>zhongdg@126.com</u>

 Table S1 Properties of antibiotics

Antibiotics	Class	Predominant spectrum	Mechanism of action
Amoxicillin	β-lactam	Gram+/ Gram- bacteriocidal	Inhibits cell wall synthesis
Neomycin sulfate	Aminoglycoside	Gram-bacteriocidal	Inhibits protein synthesis
Vancomycin	Glycopeptide	Gram+ bacteriocidal	Inhibits cell wall synthesis
Methonidazole	Nitroimidazole	Anaerobes bacteriocidal	Inhibits DNA synthesis

Table S2 Body weight gain and average food intake

	Groups	Body weight gain (%)	Food intake (g/d)
	Control	50.575 ± 5.044 a	6.092 ± 0.178 ^a
	Abx	43.054 ± 4.225 $^{\rm ab}$	6.456 ± 0.216 ^a
Abx administration period	KGM	35.413 ± 8.189 ^b	5.155 ± 0.255 a
	DKGM	32.937 ± 5.835 ^b	$5.090~\pm 0.657~^{\rm a}$
	KOGM	45.090 ± 8.600 a	5.610 ± 0.294 a
	CN	8.787 ± 2.875 a	5.914 ± 0.510 ^a
	AN	9.850 ± 1.633 a	6.321 ± 0.362 a
	KK	5.771 \pm 2.001 ^a	5.923 ± 0.311 a
Dooguary pariod	KN	7.076 ± 4.935 $^{\mathrm{a}}$	5.683 ± 0.293 a
Recovery period	DD	4.377 ± 0.050 a	5.891 ± 0.206 a
	DN	10.967 ± 1.868 a	5.695 ± 0.385 a
	KOKO	5.355 ± 0.056 a	6.341 ± 0.263 a
	KON	8.958 ± 4.011 a	5.836 ± 0.161 a

Note: Data are mean \pm SD of ten replicates. Values of different periods in the same column with different letters are significantly different (P < 0.05).

	Viscera Index	Heart	Liver	Spleen	Lung	Kidney	Small intestine	Colon
	Control	0.0066 ± 0.0028^{a}	0.0432 ± 0.0046^{a}	0.0022 ± 0.0003^{a}	0.0054 ± 0.0010^{a}	0.0151 ± 0.0018^{a}	0.0334 ± 0.007^{a}	0.0099 ± 0.0027^{a}
Abx	Abx	0.0056 ± 0.0011^{a}	0.0442 ± 0.0066^{a}	0.0022 ± 0.0005^{a}	0.0051 ± 0.0010^{a}	0.0152 ± 0.0035^{a}	$0.0377 \pm 0.0059^{\mathrm{a}}$	0.0115 ± 0.003^{a}
administration	KGM	$0.0054 \pm 0.0009^{\mathrm{a}}$	0.0412 ± 0.0030^{a}	0.0023 ± 0.0003^{a}	0.0062 ± 0.001^{a}	0.0137 ± 0.0032^{a}	0.0365 ± 0.0034^{a}	0.0123 ± 0.0031^{a}
period	DKGM	0.0051 ± 0.0009^{a}	0.0389 ± 0.0031^{a}	0.0022 ± 0.0004^{a}	0.0053 ± 0.0014^{a}	0.0136 ± 0.0023^{a}	0.0354 ± 0.0024^{a}	0.0114 ± 0.0034^{a}
-	KOGM	0.0064 ± 0.0019^{a}	0.0405 ± 0.0058^{a}	$0.0028 \pm 0.0011^{\mathrm{a}}$	0.0059 ± 0.0013^{a}	0.0156 ± 0.0015^{a}	0.035 ± 0.0074^{a}	0.0125 ± 0.0029^{a}
	CN	0.0068 ± 0.0011^{a}	0.0369 ± 0.0059^{a}	0.0026 ± 0.0008^{a}	0.0059 ± 0.0008^{a}	0.0159 ± 0.0013^{a}	0.0306 ± 0.0019^{a}	0.0107 ± 0.0042^{a}
	AN	$0.0061 \pm 0.0011^{\mathrm{a}}$	0.0353 ± 0.0047^{a}	0.0023 ± 0.0004^{a}	0.0053 ± 0.0015^{a}	0.0124 ± 0.0039^{a}	0.0309 ± 0.0108^{a}	0.0124 ± 0.0052^{a}
	KK	$0.0062 \pm 0.001^{\mathrm{a}}$	$0.0374 \pm 0.003^{\mathrm{a}}$	0.0023 ± 0.0008^{a}	$0.0057 \pm 0.0007^{\mathrm{a}}$	0.0137 ± 0.001^{a}	0.0343 ± 0.0056^{a}	0.0118 ± 0.0027^{a}
D 1	KN	0.0065 ± 0.0012^{a}	0.0373 ± 0.0057^{a}	0.0022 ± 0.0004^{a}	0.0053 ± 0.0011^{a}	0.0133 ± 0.0019^{a}	0.0343 ± 0.0056^{a}	0.0114 ± 0.0026^{a}
Recovery period	DD	0.0063 ± 0.001^{a}	0.0389 ± 0.0041^{a}	0.0022 ± 0.0002^{a}	0.0057 ± 0.0007^{a}	0.0145 ± 0.0024^{a}	0.0316 ± 0.0041^{a}	0.0113 ± 0.003^{a}
	DN	0.006 ± 0.0009^{a}	0.0375 ± 0.0034^{a}	0.0026 ± 0.0009^{a}	0.0054 ± 0.0012^{a}	0.0134 ± 0.0022^{a}	0.031 ± 0.0033^{a}	0.0109 ± 0.0017^{a}
	КОКО	0.006 ± 0.0013^{a}	0.0333 ± 0.0028^{a}	0.0022 ± 0.0002^{a}	0.0055 ± 0.0011^{a}	0.0147 ± 0.0017^{a}	0.0317 ± 0.0042^{a}	0.0127 ± 0.0038^{a}
	KON	0.0066 ± 0.0019^{a}	0.0371 ± 0.0045^{a}	0.0029 ± 0.001^{a}	0.006 ± 0.0009^{a}	0.0152 ± 0.0037^{a}	$0.0323 \pm 0.0037^{\mathrm{a}}$	0.0099 ± 0.0026^{a}

Table S3 Visceral index of mice in Abx administration period and recovery period

Note: Data are mean \pm SD of ten replicates. Values of different periods in the same column with different letters are significantly different (P < 0.05).

BT biomarkers	Inflammation biomarkers	spearman R	P value
LBP	IL-17	0.512*	0.030
	IL-10	0.215	0.391
	CRP	0.407	0.094
	TNF-α	0.119	0.639
sCD14	IL-17	0.397	0.060
	IL-10	0.346	0.106
	CRP	0.091	0.703
	TNF-α	0.569**	0.007
sCD163	IL-17	0.503*	0.014
	IL-10	0.051	0.813
	CRP	0.598**	0.005
EndoCab IgM	INF-α	0.375	0.094
	IL-17	-0.251	0.249
	IL-10	-0.060	0.776
	CRP	-0.467*	0.038
EndoCab IgG	TNF-α	-0.525*	0.015
	IL-17	0.246	0.257
	IL-10	0.387	0.056
	CRP	-0.430	0.058
	TNF-α	-0.030	0.898

Table S4 Correlation between systemic inflammation cytokines and biomarkers of BT during Abx administration

* Represents p <0.05 with significant correlation.** indicates p <0.01 with significant correlation.

BT biomarkers	Inflammation biomarkers	spearman R	P value
LBP	IL-17	-0.013	0.947
	IL-10	0.232	0.160
	CRP	0.227	0.170
	TNF-α	0.109	0.516
sCD14	IL-17	0.024	0.899
	IL-10	-0.329*	0.044
	CRP	0.735**	0.000
	TNF-α	0.793**	0.000
sCD163	IL-17	0.403*	0.025
	IL-10	-0.264	0.114
	CRP	0.368*	0.025
	TNF-α	0.504**	0.001
EndoCab IgM	IL-17	-0.208	0.262
	IL-10	0.247	0.141
	CRP	-0.518**	0.001
	TNF-α	-0.619**	0.000
EndoCab IgG	IL-17	-0.202	0.277
	IL-10	-0.236	0.154
	CRP	0.117	0.484
	TNF-α	0.069	0.681

Table S5 Correlation between systemic inflammation cytokines and biomarkers of BT in recovery period

Note: * Represents p <0.05 with significant correlation. ** indicates p <0.01 with significant correlation.

	Group	Results
Abx administration period	Control	(-)
	Abx	Lesions in mucosal and lamina propria layers (++) Inflammatory cell infiltration (++)
	KGM	(-)
	DKGM	Inflammatory cell infiltration (+)
	KOGM	(-)
Post-antibiotic period	CN	(-)
	AN	Lesions in mucosal and lamina propria layers (+++) Inflammatory cell infiltration (++)
	KK	(-)
	KN	Light lesions in mucosal and lamina propria layers (+) Light infiltration of Inflammatory cell (+)
	DD	Inflammatory cell infiltration (+)
	DN	Lesions in mucosal and lamina propria layers (++) Light infiltration of Inflammatory cell (++)
	KOKO	(-)
	KON	Light lesions in mucosal and lamina propria layers (+) Light infiltration of Inflammatory cell (+)

Table S6 Records of light microscope observation of colon

(+) or (-) indicated that lesions could be observed or not.

Metagenomics: total genomic DNA was extracted from fecal samples using the E.Z.N.A.[®] Soil DNA Kit (Omega Bio-tek, Norcross, GA, U.S.) according to manufacturer's instructions. After library construction, metagenomic sequencing was performed on Illumina NovaSeq (Illumina Inc., San Diego, CA, USA) at Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China). Reads after quality control were mapped to the non-redundant gene catalog with 95% identity using SOAPaligner (version 2.21) and gene abundance in each sample was evaluated. Representative sequences of non-redundant gene catalog were annotated based on the NCBI NR database using blastp as implemented in DIAMOND v0.9.19 with e-value cutoff of 1e⁻⁵ using Diamond (version 0.8.35) for taxonomic annotations.

As showed in Fig. S1 A and B, antibiotic treatment caused gut microbial disturbances, characterized with significantly reduced microbial diversity. The microbial family dramatically dominant changed, for example, Enterobacteriaceae and Morganellaceae, which belong to phylum Proteobacteria became predominant in Abx group instead of Muribaculaceae and Bacteroidaceae, compared with Control. KGM and its derivatives significantly altered the composition of gut microbiota by inhibiting antibiotic-induced flourish of Enterobacteriaceae and Morganellaceae, and retaining a certain structure of normal intestinal microorganisms, such as Lactobacillaceae (SCFAs producer), Muribaculaceae (SCFAs producer), Bacteroidaceae (SCFAs producer) and Akkermansiaceae.

Figure. S1 C and D exhibited the results of microbial composition and diversity after antibiotic administration. When the antibiotic administration was stopped, the microorganisms in each group were recovered to a certain extent after a 14-day recovery period, but the diversity was not completely recovered. Natural recovery (AN group) led to the abnormal proliferation of family *Bacteroidaceae*, while other families did not recover well. *Akkermansiaceae*, from phylum *Verrucomicrobia*, overgrew too in AN group. But the families in phylum *Firmicutes* and *unclassified_d_Bacteria* recovered poorly. The intervention of KGM and its derivatives significantly increased the microbial diversity, decreased the proportion of *Bacteroidaceae* and *Akkermansiaceae*, and promoted the recovery of families with less resilience, such as *Muribaculaceae*, *unclassified_d_Bacteria*, *Lachnospiraceae* and *Prevotellaceae*, thereby boosted the microbial composition ratio to a more normal level.

Figure S1 Analysis of microbial composition and diversity during (A,B) and after (C,D) antibiotic administration.