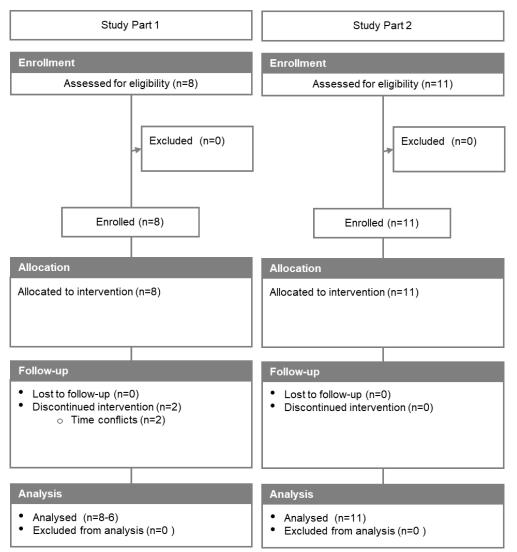
Supplementary Information

Impact of polyphenol oxidase on flavan-3-ol bioavailability from fruit smoothies: a controlled, randomized, single blinded, crossover study.

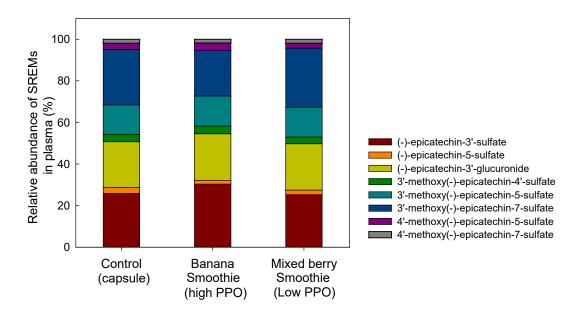
Javier I. Ottaviani^{a,b}, Jodi L. Ensunsa^b, Reedmond Y. Fong^b. Jennifer Kimball^b, Valentina Medici^c, Alan Crozier^{b,d}, Hagen Schroeter^a, Catherine Kwik-Uribe^a

^aMars Inc., McLean, VA 22101, USA ^bDepartment of Nutrition, University of California, Davis, CA 95616, USA ^cDepartment of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, Sacramento, CA 05817, USA ^dDepartment of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia

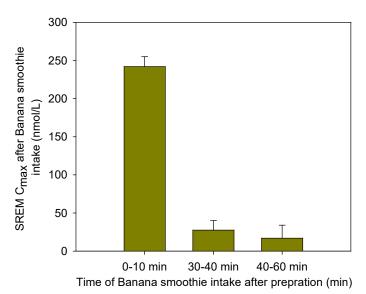
Metabolites	Retention time (min)	Parent (<i>m/z</i>)	Daughter (<i>m/z</i>)	Cone (V)	Collision (V)
(–)-Epicatechin-5-sulfate	3.92	369.1	289.2	35	26
(–)-Epicatechin-3'-sulfate	4.17	369.1	289.2	35	26
(–)-Epicatechin-3'-glucuronide	3.92	465.2	289.2	35	24
3'-Methoxy-(-)-epicatechin-4'-sulfate	4.18	383.1	303.3	40	22
3'-Methoxy-(–)-epicatechin-5-sulfate	4.35	383.1	303.3	40	22
3'-Methoxy-(–)-epicatechin-7-sulfate	4.49	383.1	303.3	40	22
4'-Methoxy-(–)-epicatechin-5-sulfate	4.63	383.1	303.3	40	22
4'-Methoxy-(–)-epicatechin-7-sulfate	4.80	383.1	303.3	40	22
5-(3'-Hydroxyphenyl)-γ-valerolactone-4'-sulfate	3.85	287.0	207.0	32	22
5-(4'-Hydroxyphenyl)-γ-valerolactone-3'-sulfate	3.93	287.0	207.0	32	22
5-(3'-Hydroxyphenyl)-γ-valerolactone-4'-glucuronide	3.69	383.2	207.2	32	20
5-(4'-Hydroxyphenyl)-γ-valerolactone-3'-glucuronide	3.85	383.2	207.2	32	20
4'-Methoxy-5-(Phenyl)-γ-valerolactone-3'-sulfate	4.10	301.0	245.2	18	20
3'-Methoxy-5-(Phenyl)-γ-valerolactone-4'-sulfate	4.32	301.0	245.2	18	20
4'-Methoxy-5-(phenyl)-γ-valerolactone-3'-	3.97	397.0	221.0	15	20
3'-Methoxy-5-(phenyl)-γ-valerolactone-4'-	4.25	397.0	221.0	15	20

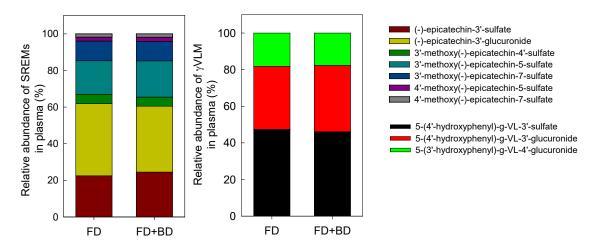

Supplemental Table 1 Conditions for the detection and quantification of structurally related (–)epicatechin metabolites and 5-(3',4'-dihydroxyphenyl)- γ -valerolactone metabolites by multiple reaction monitoring using a triple quadrupole mass spectrometer.

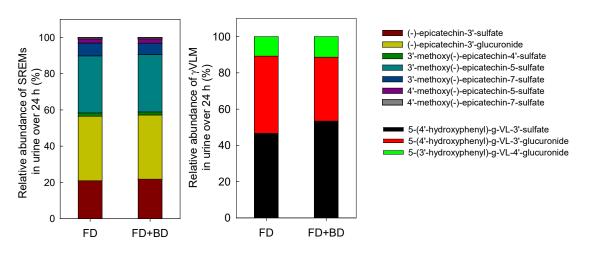
Supplemental Table 2 Accuracy and precision of the method used for the quantification of structurally related (–)-epicatechin metabolites and $5-(3',4'-dihydroxyphenyl)-\gamma$ -valerolactone metabolites in plasma and urine by UPLC-MS/MS.

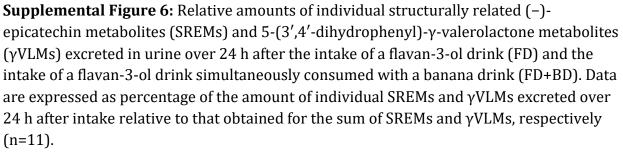

	Plas	sma	Urine	
Metabolites	Accuracy	Precision	Accuracy	Precision
(–)-Epicatechin-3'-sulfate	93%	6%	89%	5%
(–)-Epicatechin-3'-glucuronide	93%	5%	84%	3%
3'-Methoxy-(–)-epicatechin-5-sulfate	96%	4%	99%	5%
3'-Methoxy-(–)-epicatechin-7-sulfate	99%	5%	90%	3%
4'-Methoxy-(–)-epicatechin-5-sulfate	93%	7%	94%	4%
4'-Methoxy-(–)-epicatechin-7-sulfate	98%	6%	91%	4%
5-(4'-Hydroxyphenyl)-γ-valerolactone-3'-sulfate	96%	5%	91%	2%
5-(4'-Hydroxyphenyl)-γ-valerolactone-3'-glucuronide	86%	5%	86%	3%
5-(3'-Hydroxyphenyl)-γ-valerolactone-4'-glucuronide	83%	7%	81%	3%

Do not eat:	Types of foods you may eat:
Fruit (other than those specified)	Iceberg lettuce, watermelon, cucumber, white endives,
Vegetables (other than those	bananas
specified)	Corn, potatoes, rice, plain white bread and bagels
Сосоа	Milk, cream, cheese, butter
Chocolate products	kefir and yogurt without fruit
Tea, both black and herbal such as	Pasta [non-enriched], macaroni and cheese
chamomile	Rice, couscous, potatoes
Nuts	White sauces
Herbs (parsley, oregano, marjoram,	Oatmeal [non-fortified]
thyme etc.)	"Cream of wheat" or Rice,
Jelly or Jam	Grits or polenta [non-enriched]
Preserves	Fish, chicken, beef, lamb, pork, bacon, ham, eggs,
Fruit or nut-based candies	sausages
Cereals	Cheeseburgers (go light on the spices and omit
Fruit juices	tomatoes and onions)
Wine or Beer	Potato chips, fries, crackers, plain tortilla chips, pretzels
Alcohol	Cakes and sweets, which do not contain fruit, fruits
Spaghetti sauce	juice, or fruit extracts
Fruit or nut-containing breads	
Whole grain breads or crackers	


Supplemental Figure 1: Directions provided to study volunteers to follow a low-flavanol diet in preparation of study visits.


Suppl. Figure 2: CONSORT flow chart for study part 1 and 2 of the study.


Supplemental Figure 3: Relative amounts of individual structurally related (–)-epicatechin metabolites (SREMs) in plasma after the intake of flavan-3-ols in capsule form and flavan-3-ols mixed in different fruit smoothies. Data are expressed as percentage of the area under the curve described by the concentration of individual SREMs up to 6 h after intake relative to that obtained for the sum of SREMs (n = 8).



Supplemental Figure 4: Maximum plasma concentration (C_{max}) of structurally related (–)-epicatechin metabolites (SREMs) after intake of banana smoothie consumed within different time periods after preparation of the smoothie. Data are presented as mean ± SE (n = 2 per time period).

Supplemental Figure 5: Relative amounts of individual structurally related (–)-epicatechin metabolites (SREMs) and 5-(3',4'-dihydrophenyl)- γ -valerolactone metabolites (γ VLMs) in plasma after the intake of a flavan-3-ol drink (FD) and the intake of a flavan-3-ol drink simultaneously consumed with a banana drink (FD+BD). Data are expressed as percentage of the area under the curve described by the concentration of individual SREMs up to 6 h after intake relative to that obtained for the sum of SREMs, and as percentage of the plasma concentration of individual γ VLMs 6 h after intake relative to that obtained for the sum of γ VLMs (n = 11).

Supplementary Test Materials:

In addition to banana smoothie and mixed berry smoothie, 5 additional foods added with flavan-3-ols were tested during study part 1. This aimed at assessing the effect of a broad range of food matrixes on flavan-3-ol bioavailability. These additional test foods included i) peanut butter toast (serving: 132 g), ii) oatmeal (serving: 277 g), iii) yogurt (serving: 227 g), iv) a high protein drink (serving: 236 mL) and v) sports drink (serving: 355 mL). Peanut butter toast was prepared with 32 g of peanut butter spread added with flavan-3-ols on a 50 g white bread toast with 50 g of sliced strawberries. Oatmeal was prepared with 40 g of instant oats and 237 g of boiling water, following flavan-3-ols were added. Yogurt, High protein drink and sports drink (Gatorade) were directly added with flavan-3-ols. All foods and beverages were commercially available, obtained from a local grocery store and stored according to manufacturer directions. The content of macronutrients as well as the amount of flavan-3-ols added in the foods tested are detailed in Table I.

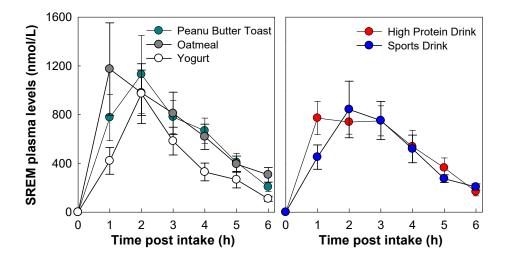
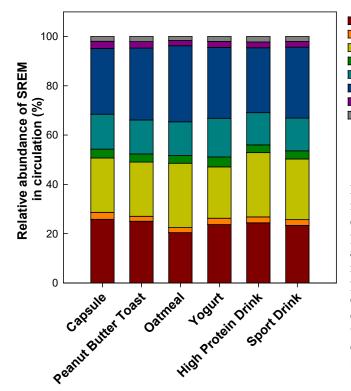

	Peanut Butter-Toast	Oatmeal	Yogurt	High Protein Drink	Sports Drink
Energy (Kcal)	386	176	159	240	112
Protein (g)	14	8	24	15	0
Fat (g)	19	3	0	6	0
Carbohydrate (g)	41	31	15	33	29
Fiber (g)	5	5	0	0	0
Sugar (g)	7	0.4	9	27	27
Flavan-3-ols added (mg)	642	642	484	565	565
(–)-Epicatechin (mg)	85	85	68	78	78
(+)-Epicatechin (mg)	b.l.d.	b.l.d.	b.l.d.	b.l.d.	b.l.d.
(−)-Catechin (mg)	7	7	9	8	8
(+)-Catechin (mg)	3	3	3	3	3
DP2 (mg)	101	101	75	90	90
DP3 (mg)	146	146	91	103	103
DP4 (mg)	97	97	78	91	91
DP5 (mg)	85	85	67	80	80
DP6 (mg)	68	68	53	64	64
DP7 (mg)	50	50	40	48	48

Table I Content of macronutrients and amount of flavan-3-ols added to the additional test foods evaluated during study part 1. Nutritional content was obtained from labels and from USDA Food Data Central.

DP: degree of polymerization; b.l.d.:below level of detection

Supplementary Results

The intake of additional test foods added with flavan-3-ols significantly increased SREM levels in plasma (Figure I). Pharmacokinetic parameters after the intake of additional test foods are shown in Table II. When accounting for differences in time to reach peak plasma concentrations and differences in the amount of (–)-epicatechin in each test foods (as reflected by AUC_{0-inf}/75 mg Epi; Table II), no significant differences were observed in SREM levels between additional test foods and control. Concurrently, no differences in the profile of SREMs were detected (Figure II).


Figure I: Concentration of structurally related (–)-epicatechin metabolites (SREMs) in plasma after the intake of additional test foods added with flavan-3-ols. Data are expressed as means ± SEM (n=6).

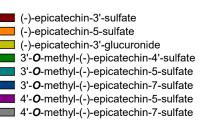

<u>Conclusion</u>: The intake of flavan-3-ols added to different foods did not significantly affect the absorption and metabolism of these compounds.

Table II: Pharmacokinetic parameters determined for the sum of structurally related (–)-epicatechin metabolites (SREM) after the different foods added with flavan-3-ols. Data presented as mean values \pm SEM (n = 6)^a.

0						
Test products	Cmax	T _{max}	$t_{1/2}$	AUC0-6h	AUCo-inf	AUC _{0-inf} /75 mg Epi
	(nmol/L)	(h)	(h)	(nmol/L*6 h)	(nmol/L* h)	(nmol/L* h)
Capsule (control)	680±78	3.6±0.2	2.4±0.4	2,259±279	3,860±622	3,860±622
Peanut Butter-Toast	1,288±292*	2.2±0.4	1.5 ± 0.1	3,930±646*	4,433±709	3,932±629
Oatmeal	1,339±353*	1.5±0.2*	2.5 ± 0.4	4,192±863*	5,311±931*	4,711±826
Yogurt	1,006±242	2.2±0.2	1.5 ± 0.1	2,683±556	3,030±625	3,342±689
High Protein Drink	980±133	2.0±0.5*	1.7±0.2	3,245±381	3,640±416	3,496±400
Sports Drink	971±192	2.2±0.3	1.7 ± 0.4	2,998±523	3,515±541	3,376±520

^anot determined, n.d.; peak plasma concentration, C_{max} ; time to reach C_{max} , T_{max} ; apparent elimination half-life, $AT_{1/2}$; 0-6 h plasma area under the curve, AUC_{0-6h} ; plasma area under the curve extrapolated to infinity, AUC_{0-inf} ; plasma area under the curve extrapolated to infinity and normalized to an intake of 75 mg (–)-epicatechin, $AUC_{0-inf}/75$ mg Epi; *p<0.05 vs. control (Capsule); ANOVA-RM, Bonferroni post-hoc.

Figure II: Relative amounts of individual structurally related (–)-epicatechin metabolites (SREM) in plasma after the intake of additional test foods added with flavan-3-ols. Data are expressed as percentage of the area under the curve described by the concentration of individual SREMs up to 6 h after intake relative to that obtained for the sum of SREMs (n=6).