Supporting Information

Kluyveromyces marxianus supplementation ameliorates alcohol-induced liver injury associated with the modulation of gut microbiota in mice

Yuanyuan Cui^{1,2}, Peng Guo^{1,2}, Mengge Ning^{1,2}, Yuan Yue⁴, Yahong Yuan^{1,2*},

Tianli Yue^{1,2,3*}

¹ College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China;

² Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of

Agriculture, Yangling, 712100, China;

³ College of Food Science and Technology, Northwest University Xi'an, 710069, China

⁴ Xi'an GaoXin No.1 High School, Xi'an, 710119, China

* Corresponding authors:

Yahong Yuan E-mail: yyh324@126.com Tel: +86-29-87092261

Tianli Yue E-mail: yuetl305@nwafu.edu.cn Tel: +86-29-87092261

Institute: College of Food Science and Engineering, Northwest A&F University

Address: 22. Xi-nong Road, Yangling, Shaanxi, 712100, China.

Figure S1 *K. marxianus* regulated specific gut bacterial microbiota. Relative abundance of (A) Erysipelotrichaceae, (B) Lactobacillaceae, (C) Lachnospiraceae, (D) Bacillaceae and (E) Eggerthellaceae at the family level. Relative abundance of (F) *Coriobacteriaceae*_UCG-002, (G) *Allobaculum*, (H) *Lactobacillus*, (I) *Monoglobus*, (J) *Dubosiella*, (K) *Bacillus* and (L) *unclassified_f_Lachnospiraceae* at the genus level. n = 6; Data are presented as mean \pm standard deviation (SD). *p<0.05, **p<0.01, **p<0.001 according to Wilcoxon rank sum test. CK, control fed mice; EtOH, ethanol fed mice; Km, ethanol + K. marxianus fed mice.

Figure S2 Variation analysis of gut bacterial microbiota on family level in CK vs EtOH (A) and EtOH vs Km (B) according to Wilcoxon rank sum test. n = 6; *p < 0.05, **p < 0.01, **p < 0.001. CK, control fed mice; EtOH, ethanol fed mice; Km, ethanol + *K. marxianus* fed mice.

Figure S3 Variation analysis of gut bacterial microbiota on genus level in CK vs EtOH (A) and EtOH vs Km (B) according to Wilcoxon rank sum test. n = 6; *p < 0.05, **p < 0.01, **p < 0.001. CK, control fed mice; EtOH, ethanol fed mice; Km, ethanol + *K. marxianus* fed mice.

Figure S4 *K. marxianus* regulated specific gut fungal microbiota. Relative abundance of (A) *Penicillium*, (B) *Candida*, (C) Saccharomycetales_fam_Incertae_sedis, (D) *unclassified_f_Ceratocystidaceae*, (E) Ceratocystidaceae, (F) *Epicoccum*, (G) *Tausonia*, (H) *Kluyveromyces*, (I) Saccharomycetaceae. n = 6; Data are presented as mean \pm standard deviation (SD). **p*<0.05, ***p*<0.01, ***p*<0.001 according to Wilcoxon rank sum test. CK, control fed mice; EtOH, ethanol fed mice; Km, ethanol + *K. marxianus* fed mice.

Ingredient	LDC diet (L10016A)		Control diet		Ethanol diet	
	g	kcal	g	kcal	g	kcal
Casein	41.4	166	41.4	166	41.4	166
DL-Methionine	0.3	1	0.3	1	0.3	1
L-Cystine	0.5	2	0.5	2	0.5	2
Maltodextrin	25.6	102	25.6+89.6	461	25.6+ ()	
Cellulose	10	0	10	0	10	0
Xantham Gum	3	0	3	0	3	0
Corn oil	8.5	77	8.5	77	8.5	77
Olive oil	28.4	256	28.4	256	28.4	256
Safflower oil	2.7	24	2.7	24	2.7	24
Minerals	8.75	0	8.75	0	8.75	0
Vitamins	2.5	9	2.5	9	2.5	9
Choline	0.53	0	0.53	0	0.53	0
Bitartrate						
Ethanol, 100%					1% up to	
					4%	
H ₂ O			778.22			
Total	132.18	637	1000	996	1000	996

Table S1 Ingredients and calories of Lieber DeCarli (LDC) diet

Gene	Primer sequence $(5' \rightarrow 3')$
β-actin	F: GCTCTGGCTCCTAGCACCAT
	R: GCCACCGATCCACACAGAGT
IL-6	F: GTTGCCTTCTTGGGACTGATGCT
	R: GCCTCCGACTTGTGAAGTGGTATAG
IL-1β	F: GCAACTGTTCCTGAACTCAACT
	R: ATCTTTTGGGGGTCCGTCAACT
TNF-α	F: CCCTCACACTCAGATCATCTTCT
	R: GCTACGACGTGGGCTACAG

Table S2 Primer sequences used in qRT-PCR for cytokine mRNA quantification^{1, 2}

Reference

- X. Zeng, X. Li, Y. Yue, X. Wang, H. Chen, Y. Gu, H. Jia, Y. He, Y. Yuan and T. Yue, Ameliorative Effect of Saccharomyces cerevisiae JKSP39 on *Fusobacterium nucleatum* and Dextran Sulfate Sodium-Induced Colitis Mouse Model, *J Agric Food Chem*, 2022, 70, 14179-14192.
- X. Zeng, H. Jia, Y. Shi, K. Chen, Z. Wang, Z. Gao, Y. Yuan and T. Yue, Lactobacillus kefiranofaciens JKSP109 and Saccharomyces cerevisiae JKSP39 isolated from Tibetan kefir grain co-alleviated AOM/DSS induced inflammation and colorectal carcinogenesis, *Food & Function*, 2022, 13, 6947-6961.