## Electronic Supplementary Material (ESI) for Food \& Function.

Supplemental materials
Dietary Patterns, Uric Acid Levels, and Hyperuricemia: A Systematic Review and Meta-Analysis
Catalogue
Table S1 Results of literature search ..... P2
Table S2 Dietary patterns, categories, and constituent foods from 41 studies included in the meta- analysis. ..... P3
Table S3 Quality assessment: cross-sectional studies. ..... P11
Table S4 Quality assessment: cohort studies and case-control studies. ..... P13
Table S5 Subgroup analysis for the association between dietary patterns and hyperuricemia. ..... P14
Table S6 Publication bias of included articles. ..... P16
Figure S1 Assessment risk of bias of non-randomized studies. ..... P17
Figure S2 Assessment risk of bias of randomized controlled trials. ..... P18
Figure S3 Forest plot of plant-based dietary pattern and SUA. ..... P19
Figure S4 Forest plot of animal-based dietary pattern and SUA. ..... P20
Figure S5 Forest plot of mixed dietary pattern and SUA. ..... P21
Figure S6 Funnel plot for the association between animal-based dietary pattern and SUA (effect value: mean difference) ..... P22Figure S7 Funnel plot for the association between dietary patterns and SUA (effect value:coefficient).P23
Figure S8 Funnel plot for the association between dietary patterns and hyperuricemia (effect value: odds ratio) ..... P24
Figure S9 Influence analysis for the association between animal-based dietary pattern and SUA (effect value: mean difference) ..... P25
Figure S10 Influence analysis for the association between dietary patterns and SUA (effect value:coefficient).P26Figure S11 Influence analysis for the association between dietary patterns and hyperuricemia(effect value: odds ratio).P27
Figure S12 Influence analysis for the association between plant-based dietary pattern and SUA(effect value: mean difference).P28
Figure S13 Forest plot of plant-based dietary pattern and SUA in cross-sectionalstudies (excluded studies of Pilar Guallar-Castillón et al. and Ahmad Syauqy et al).

Table S1 Results of literature search.

| Database | Date of search | Query formulation | Number of literature detected |
| :---: | :---: | :---: | :---: |
| PubMed | March 15, 2023 | (((dietary pattern*) OR (eating pattern*) OR (food pattern*) OR (diet pattern*) OR (nutrient pattern*) OR (diet*) OR (diet index) OR (diet score) OR (dietary) OR (dietary intake) OR (dietary score) OR (dietary index) OR (dietary type*) OR (dietary habit*) OR (dietary approaches*)) AND ((hyperuricemia) OR (serum uric acid) OR (uric acid) OR (Serum Urate))) | 5850 |
| Web of Science | March 15, 2023 | (((dietary pattern*) OR (eating pattern*) OR (food pattern*) OR (diet pattern*) OR (nutrient pattern*) OR (diet*) OR (diet index) OR (diet score) OR (dietary) OR (dietary intake) OR (dietary score) OR (dietary index) OR (dietary type*) OR (dietary habit*) OR (dietary approaches*)) AND ((hyperuricemia) OR (serum uric acid) OR (uric acid) OR (Serum Urate))) | 9036 |
| Embase | March 15, 2023 | (((dietary pattern*) OR (eating pattern*) OR (food pattern*) OR (diet pattern*) OR (nutrient pattern*) OR (diet*) OR (diet index) OR (diet score) OR (dietary) OR (dietary intake) OR (dietary score) OR (dietary index) OR (dietary type*) OR (dietary habit*) OR (dietary approaches*)) AND ((hyperuricemia) OR (serum uric acid) OR (uric acid) OR (Serum Urate))) | 13362 |

Table S2 Dietary patterns, categories, and constituent foods from 41 studies included in the meta-analysis.

| Author | Location | Year | Dietary pattern | Constituent foods | Categories |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Meiqi Zhou et al. (1) [8] | China | 2022 | Plant-based dietary pattern | High intake of fresh vegetables, fruits, dairy products, eggs, and legumes and their products | Plant-based |
|  |  |  | Animal dietary pattern | High intake of poultry, livestock, fish and shrimp, processed meat and nuts | Animal-based |
|  |  |  | RRR dietary pattern | High intake of poultry, sugary beverages, and animal organs and the low intake of desserts and snacks | Mixed |
|  |  |  | PLS diet | Poultry, Animal organs, Sugary beverages, Tea or coffee, Meat, Legumes and their products, Fresh vegetables, Preserved vegetables | Animal-based |
|  |  |  | Processed food diet | Mushrooms and algae, Preserved vegetables, Snacks and dessert, Processed meats | Mixed |
| Tingjing Zhang et al. [36] | China | 2022 | Vegetable | High intake of celery, cucumber, Chinese cabbage, green leafy vegetables, pumpkin, and carrot | Plant-based |
|  |  |  | Sweet food | Strawberry, kiwi fruit, persimmon, grape, pineapple, Western-style pastry, cakes, sweets, and candied fruits | Mixed |
|  |  |  | Animal food patterns | High consumption of animal organs, animal blood, animal liver, preserved eggs and sausage | Animal-based |
| Meilin Zhang et al. [20] | China | 2012 | Animal products and fried food pattern | High in pork, eggs, animal giblets, poultry and fried wheat products while low in vegetables and fruits | Animal-based |
|  |  |  | Western pattern | High in beef, lamb, cake, and beverages, including juice and alcoholic beverages | Animal-based |
|  |  |  | Soybean products and fruit pattern | High in soybean products, fruits, vegetables and starchy tubers | Plant-based |
| Marta Guasch-Ferré et al. [15] | Spain | 2013 | Mediterranean Diet | High consumption of fruits, vegetables, legumes, olive oil, nuts, and whole grain; a moderate consumption of wine, dairy products, and poultry; and a low consumption of red meat, sweet beverages, creams, and pastries | Plant-based |
| Yuxiang Yang et al. [51] | China | 2022 | Typical Chinese | Wheat, coarse grain, fried staple, tuber | Plant-based |
|  |  |  | Modern Chinese | Bacteria, legume and product, mixed beans, fresh vegetable, fresh fruit, dry fruit, aquatic product, coarse grain, dairy and product, fresh egg, nuts and seeds | Plant-based |


|  |  |  | Western | Western staples, snack, soft beverage, dairy and product, nuts and seeds, processed meat, fresh egg, dry fruit | Mixed |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Animal products and alcohol | Organ, red meat, alcohol, poultry, fried staple, processed egg, aquatic product, processed meat | Animal-based |
|  |  |  | Tuber and fermented vegetables | Fermented vegetable, tuber, animal fat, dry vegetable, mixed beans, snack | Plant-based |
| Yang Xia et al. [18] | China | 2018 | Vegetable dietary pattern Sweet pattern | Vegetables, soy products, coarse cereals Candied fruits, cakes, ice cream | Plant-based Mixed |
| Zumin Shi et al. [37] | China | 2020 | Animal foods dietary pattern Traditional southern pattern | Animal organ, seafood, processed meat products Rice, pork and vegetable, inverse loadings for wheat flour and whole grain | Animal-based Mixed |
|  |  |  | Modern dietary pattern | Fruit, soy milk, eggs, milk, deep fried products, fast food and cakes, inverse loadings for rice and salted vegetables | Mixed |
| Xirun Liu et al. (1) [21] | China | 2020 | HUA-related dietary pattern | Higher intake of fish, fresh meat, wine, sugary drinks, cured bacon, wheat products and less intake of vegetables and milk | Animal-based |
|  |  |  | Mixed food pattern | Intake of fish, vegetables, eggs, animal viscera, fresh meat, cereals and potatoes | Animal-based |
|  |  |  | Meat and wine pattern | Intake of cured bacon, wine, algae, nuts, fish, beans | Mixed |
|  |  |  | Fruit and vegetable pattern | High intake of fruits, vegetables, rice noodles, cured bacon and less fresh meat | Plant-based |
|  |  |  | Vegetable and fish meat pattern | Intake of fish, vegetables, algae, animal viscera, wheat products | Mixed |
|  |  |  | Mixed food pattern | legumes, algae, vegetables, fruits, fresh meat, sugary drinks, milk, nuts | Plant-based |
|  |  |  | Vegetable and staple pattern | Intake of vegetables, cereals and potatoes, rice and noodles, algae, cured bacon, milk | Plant-based |
| Xirun Liu et al. (2) [52] | China | 2018 | Animal products pattern | Fish, animal giblets, fresh meat, wheat products | Animal-based |
|  |  |  | Plant-based pattern | Vegetables, fruits, mushroom, algae food, legumes, nuts, brawn, and bacon | Plant-based |
|  |  |  | Mixed food | Rice, cereal, tubers, snack, dessert, eggs, and animal giblets | Mixed |

Fang He et al. [53] China 2017

Yun Gao et al. [54]

Kontogianni, M. D. et al.

## [42]

Christina Chrysohoou et al. [41]
L. Bekkouche et al. [16

China

Algeria
China

Korean

Meat food pattern

Mixed food patterns

DASH
2021

## Mediterranean diet

Mediterranean diet

Mediterranean Diet

## Meat pattern <br> Coastal pattern <br> Traditional pattern High-quality protein pattern

Traditional Chinese pattern

Mediterranean diet

Fruit and Vegetable-rich diet

Stephen P Juraschek et al.
(1) $[60]$

America

Livestock, other meats and dairy products Aquatic products and alcoholic drinks Cereals, pork and vegetables Soy and its products, eggs
High intake of rice and rice products, coarse grains, starchy tubers, vegetables, pickled vegetables, pork, soybean and soybean products, and tea
High intakes of poultry, beef/mutton, processed and cooked meat, eggs, fats/oil, snacks and fast food, milk and dairy, cake and biscuits, and soft drinks
High intakes of wheat and wheat products, vegetables, mushroom, fresh fruits, pork, fish and shrimps, seafood, and caffeinated beverages
Higher intakes of vegetables, fruits or 18 grains and lower intake of fat or sweetened beverages
High consumption of fruits, vegetables, legumes, olive oil, nuts, and whole grain; a moderate consumption of wine, dairy products, and poultry; and a low consumption of red meat, sweet beverages, creams, and pastries
High consumption of fruits, vegetables, legumes, olive oil, nuts, and whole grain; a moderate consumption of wine, dairy products, and poultry; and a low
consumption of red meat, sweet beverages, creams, and pastries
High consumption of fruits, vegetables, legumes, olive oil, nuts, and whole grain; a moderate consumption of wine, dairy products, and poultry; and a low
consumption of red meat, sweet beverages, creams, and pastries
A fruit and vegetable (FV)-rich diet but otherwise similar to typical American diet
Higher intakes of vegetables, fruits or 18 grains and lower intake of fat or sweetened beverages

Animal-based
Mixed
Mixed
Mixed
Plant-based

Animal-based

Plant-based

Plant-based

Plant-based

Plant-based

Plant-based

Plant-based
Plant-based

Typical American diet
Olive Tang et al. [61]
Stephen P. Juraschek et al.

| M. Chatzipavlou et al. [66] | Greece | 2014 |
| :---: | :---: | :---: |
| Yi-Tsen Tsai MS et al. [47] | China <br> Taiwan | 2012 |
|  | China | 2020 |


| Meilin Zhang et al. (2) [17] | China | 2016 |
| :---: | :---: | :---: |
| Xueying Wang et al. [57] | China | 2019 |
|  |  |  |
| Tingting Li et al. [19] | China | 2022 |

DASH

Typical American diet

DASH

Mediterranean Diet

Vegetable and fruit pattern
Uric acid-prone pattern
Veggie-fruit-grains dietary pattern
Meat-seafood-eggs dietary pattern

Processed food-sweets dietary pattern
Milk-dairy dietary pattern
High fruit and soybean products diet
Traditional model
Fried and smoked food and dessert model
High quality protein model Meat-based

Low in fruits, vegetables, and dairy products, with a fat content typical of the average diet in the United States
Higher intakes of vegetables, fruits or 18 grains and lower intake of fat or sweetened beverages
Low in fruits, vegetables, and dairy products, with a
fat content typical of the average diet in the United States.
Higher intakes of vegetables, fruits or 18 grains and lower intake of fat or sweetened beverages
High consumption of fruits, vegetables, legumes, olive oil, nuts, and whole grain; a moderate consumption of wine, dairy products, and poultry; and a low
consumption of red meat, sweet beverages, creams, and pastries
Dark vegetables, White vegetables, Soy products, Fruit
Seafood, Meat, Beverages, Organ meat
Dark- or light-colored vegetables, fruit, root crops, vegetables in oil/dressing, whole grains, rice/flour products, and legumes/soy products.

Meat, seafood, organ meats, and eggs
Processed food, deep-fried food, sugary drinks, sauce, instant noodles, jam/honey, refined dessert, and fried rice/flour products
Milk and dairy products
High in soybean products, fruits, vegetables and starchy tubers
High intake of cereals, meat, fruits and vegetables
High intake of fried, cured, smoked foods and desserts
High intake of milk, eggs, beans
High intake of animal organ meats, seafood, fresh

Mixed

Plant-based

Mixed

Plant-based

Plant-based

Plant-based
Animal-based
Plant-based

Animal-based

Mixed
Mixed
Plant-based
Mixed
Mixed
Mixed
Animal-based

| Tingxin Li et al. [55] | China | 2022 | meat, and eggs |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Plant-based | Intake of mushroom algae, beans, and their products, nuts, and fruits | Mixed |
|  |  |  | Local special <br> Animal-based and processed food | Intake of marinated smoked meat and grease | Animal-based |
|  |  |  |  | Refined rice and noodle, meat, aquatic products | Mixed |
|  |  |  | Trational | Whole grains, vegetables, legume products | Plant-based |
|  |  |  | Ovo-lacto vegetarian | Dairy products, fruits, eggs | Plant-based |
| Jiaqi Nie et al. [56] | America | 2022 | HEI | Total fruit, whole fruit, total vegetables, dark green and orange vegetables and legumes, total grains, whole grains), milk, meat and beans, and oils. | Plant-based |
| Kangqi Yi et al. [38] | China | 2022 | DASH | Higher intakes of vegetables, fruits or 18 grains and lower intake of fat or sweetened beverages | Plant-based |
| Tanya J Major et al. [43] | America | 2018 | DASH | Higher intakes of vegetables, fruits or 18 grains and lower intake of fat or sweetened beverages | Plant-based |
|  |  |  | Mediterranean diet | High consumption of fruits, vegetables, legumes, olive oil, nuts, and whole grain; a moderate consumption of wine, dairy products, and poultry; and a low consumption of red meat, sweet beverages, creams, and pastries | Plant-based |
| Ioanna Panagiota Kalafati et al. [40] | Greek | 2018 | Fast-food type | Fast-food main dishes, Sugar-sweetened soft drinks, Fried potatoes, Savory and puff pastry snacks, Red meat, Potatoes | Mixed |
|  |  |  | Prudent | Olive oil-based cooked vegetables, Legumes, Potatoes ,Fruits \& Vegetables , Fatty fish | Plant-based |
|  |  |  | High Protein Unsaturated FA | Poultry, Eggs, Red meat <br> Nuts, Chocolate, Foods rich in unsaturated FA | Animal-based Mixed |
| Luisa Lampignano et al. [44] | Italy | 2021 | Mediterranean diet | High consumption of fruits, vegetables, legumes, olive oil, nuts, and whole grain; a moderate consumption of wine, dairy products, and poultry; and a low consumption of red meat, sweet beverages, creams, and pastries | Plant-based |
| Giana Zarbato Longo et al. [45] | Brazil | 2022 | Western | Hamburgers and cheese sandwiches, Soft drinks, Pizza/pasta, Stroganoff, Chocolate, Processed meat, | Mixed |

## Sweets

Olive oil and other oils, Cheeses and cream cheese, Natural spices, Processed foods, Snacks (toasted), Snacks (toasted)
Fruits, Breakfast cereals, Vegetables, Natural fruit
juice, Yogurt and fermented milk

Rice and roots, Beans, Caffeinated beverages, Meats (red and pork)
Higher intakes of vegetables, fruits or 18 grains and lower intake of fat or sweetened beverages
High consumption of fruits, vegetables, legumes, olive oil, nuts, and whole grain; a moderate consumption of wine, dairy products, and poultry; and a low
consumption of red meat, sweet beverages, creams, and pastries
High intake of beverages, fruits, and vegetables. Low intake of cereal products, dairy products, meat, fats/oils, and sweet intake
High consumption of fruits, vegetables, legumes, olive oil, nuts, and whole grain; a moderate consumption of wine, dairy products, and poultry; and a low consumption of red meat, sweet beverages, creams, and pastries
Processed and red meat, white potato products, nonwhole grains, added fat and reduced consumption of non-citrus fruits
High intake of refined grains, processed meat, red meat, high-sugar beverages, eggs, potatoes, beer, sweets and cakes, snacks and butter
High intake of vegetables, vegetable oils, legumes, fruits, fish and whole grains
Various types of vegetables and fruits such as cabbage, cauliflower, broccoli, non-leafy, root and green leafy vegetables

## Mixed

Plant-based

Plant-based

Plant-based

Plant-based

Animal-based

## Mixed

Plant-based

Plant-based


| Sergey A. Maksimov et al. [59] | Russia | 2020 | 'Smart' dietary pattern | Dairy products (milk, kefir, yogurt, sour cream, cream, cottage cheese, cheese), Sweets and pastries (candies, jams, cookies, etc.), Fruits and vegetables, Cereals, pasta | Plant-based |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 'Salty' dietary pattern | Sausages, frankfurters, offal (tongue, liver, heart, etc.), Pickled and marinated foods | Animal-based |
|  |  |  | 'Meat' dietary pattern | Meat (beef, pork, lamb, etc.), Fish and seafood, Poultry (chicken, turkey, etc.) | Animal-based |
|  |  |  | 'Mixed' dietary pattern | Legumes (beans, lentils, peas, etc.), Pickled and | Mixed |

Abbreviation: RRR: Reduced Rank Regression; PLS: Partial Least Squares Regression; DASH: Dietary Approaches to Stop Hypertension; HEI2015: the Healthy Eating Index 2015; FA: Fatty Acids.

Table S3 Quality assessment: cross-sectional studies.

| First author, published year | Selection $\left(\operatorname{Max}=4^{*}\right)$ | Comparability ( $\mathrm{Max}=2 *)$ | Outcome ( $\mathrm{Max}=3^{*}$ ) |
| :---: | :---: | :---: | :---: |
| Jiaqi Nie et al. 2022[56] | **** | ** | *** |
| Kontogianni, M. D et al. 2012[42] | *** | ** | ** |
| Christina Chrysohoou et al. 2011[41] | *** | ** | *** |
| Tanya J Major et al. 2018[43] | *** | * | ** |
| Luisa Lampignano et al. 2021[44] | *** | ** | ** |
| Ahmad Syauqy et al. 2021[48] | **** | ** | * |
| Giana Zarbato Longo et al. 2022[45] | *** | ** | ** |
| Judith Heindel et al. 2020[46] | *** | ** | *** |
| Yi-Tsen Tsai MS et al. 2012[47] | *** | ** | ** |
| Christin Heidemann et al. 2011[49] | *** | ** | ** |
| Roseline Yap WK et al. 2012[22] | *** | ** | ** |
| Pilar Guallar-Castillón et al. 2013[50] | *** | ** | *** |
| Meiqi Zhou et al. 2022 [8] | *** | ** | ** |
| Marta Guasch-Ferré et al. 2013[15] | **** | ** | * |
| Yuxiang Yang et al. 2022[51] | *** | ** | ** |
| Xirun Liu et al. (1) 2020[21] | *** | ** | *** |
| Xirun Liu et al. (2) 2018[52] | *** | ** | *** |
| Shaokai Lin et al. 2018[9] | *** | ** | *** |
| Fang He et al. 2017[53] | *** | ** | ** |
| Yun Gao et al. 2021[54] | *** | * | *** |
| Xueying Wang et al. 2019[57] | *** | ** | ** |


| Tingting Li et al. 2022[19] | $* * *$ | $* *$ | $* *$ |
| :--- | :--- | :--- | :--- |
| Tingxin Li et al. 2022[55] | $* * *$ | $*$ | $* *$ |
| Farhad Vahid et al. 2023[58] | $* * *$ | $* *$ | $* *$ |
| Sergey A. Maksimov et al. 2020[59] | $* * *$ | $* *$ | $* * *$ |

Table S4 Quality assessment: cohort studies and case-control studies.

| First author, published year | Selection | Comparability | Outcome |
| :--- | :--- | :--- | :--- |
| Zumin Shi et al. 2020[37] | $* * * *$ | $* *$ | $* * *$ |
| Tingjing Zhang et al. 2022[36] | $* * * *$ | $* *$ | $* * *$ |
| Kangqi Yi et al. 2022[38] | $* * * *$ | $* *$ | $* * *$ |
| Mariane He'roux et al. 2010[39] | $* * * *$ | $*$ | $* * *$ |
| Meilin Zhang et al. (1) 2012[20] | $* * * *$ | $* *$ | $* * *$ |
| Ioanna Panagiota Kalafati et al. 2018[40] | $* * * *$ | $*$ | $* * *$ |
| Yang Xia et al.2018[18] | $* * * *$ | $* *$ | $* * *$ |

Table S5 Subgroup analysis for the association between dietary patterns and hyperuricemia.

| Dietary patterns | Study characteristic | Categories | Effect size | $I^{2}(\%)$ | Odds ratio | 95\% CI | P |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plant-based dietary pattern ( $\mathrm{n}=22$ ) | Pooled effect size | 1 | 22 | 93.0 | 0.75 | (0.68, 0.83) | 0.000 |
|  | Sample size | $\mathrm{n} \leq 2000$ | 9 | 77.1 | 0.75 | $(0.58,0.98)$ | 0.000 |
|  |  | $\mathrm{n}>2000$ | 13 | 95.6 | 0.74 | (0.66, 0.85) | 0.000 |
|  | Study design | Cross-sectional study | 18 | 94.2 | 0.75 | $(0.66,0.85)$ | 0.000 |
|  |  | Cohort study | 2 | 0.0 | 0.80 | (0.74, 0.87) | 0.580 |
|  |  | Case-control study | 2 | 91.2 | 0.52 | (0.17, 1.58) | 0.001 |
|  | Methods used to identify dietary patterns | Posteriori | 17 | 91.9 | 0.75 | (0.63, 0.88) | 0.000 |
|  |  | Priori | 5 | 92.6 | 0.78 | $(0.66,0.91)$ | 0.000 |
|  | Location | China | 18 | 91.2 | 0.74 | (0.64, 0.86) | 0.000 |
|  |  | The other regions | 4 | 54.2 | 0.85 | (0.78, 0.92) | 0.088 |
| Animal-based dietary pattern ( $\mathrm{n}=16$ ) | Pooled effect size | 1 | 16 | 87.6 | 1.36 | (1.21, 1.54) | 0.000 |
|  | Sample size | $\mathrm{n} \leq 2000$ | 6 | 14.0 | 1.31 | $(1.13,1.52)$ | 0.325 |
|  |  | $\mathrm{n}>2000$ | 10 | 92.7 | 1.39 | (1.16, 1.66) | 0.000 |
|  | Study design | Cross-sectional study | 12 | 91.0 | 1.37 | $(1.15,1.65)$ | 0.000 |
|  |  | Cohort study | 1 | 1 | 1.24 | (1.13, 1.37) | 1 |
|  |  | Case-control study | 3 | 0.0 | 1.53 | (1.25, 1.87) | 0.386 |
| Mixed dietary pattern ( $\mathrm{n}=22$ ) | Pooled effect size | 1 | 22 | 86.3 | 1.16 | (1.01, 1.32) | 0.000 |
|  | Sample size | $\mathrm{n} \leq 2000$ | 11 | 68.5 | 1.22 | (0.99, 1.51) | 0.000 |
|  |  | $\mathrm{n}>2000$ | 11 | 91.7 | 1.12 | (0.94, 1.33) | 0.000 |


| Study design | Cross-sectional study | 18 | 64.1 | 1.06 | $(0.95,1.18)$ | 0.000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | Cohort study | 3 | 97.2 | 1.65 | $(0.91,2.99)$ | 0.000 |
|  | Case-control study | 1 | 1 | 1.10 | $(0.89,1.36)$ | 1 |

Table S6. Publication bias of included articles.

| Dietary patterns | Categories | Publication bias |
| :--- | :--- | :--- |
| Plant-based dietary pattern | Hyperuricemia | $\mathrm{P}=0.028$ |
|  | SUA-mean difference | $\mathrm{P}=0.958$ |
|  | SUA-coefficient | $\mathrm{P}=0.000$ |
| Animal-based dietary pattern | Hyperuricemia | $\mathrm{P}=0.402$ |
|  | SUA-mean difference | $\mathrm{P}=0.879$ |
|  | SUA-coefficient | $\mathrm{P}=0.372$ |
| Mixed dietary pattern | Hyperuricemia | $\mathrm{P}=0.928$ |
|  | SUA-mean difference | $\mathrm{P}=0.885$ |
|  | SUA-coefficient | $\mathrm{P}=0.517$ |



Figure S1 Assessment risk of bias of non-randomized studies included in this review according to the Risk of Bias in Non-randomized Studiesof Interventions (ROBINS-I) assessment tool. Red: high/critical risk, yellow: moderate risk, green: low risk, grey: no information or unclear risk.


Figure S2 Assessment risk of bias of randomized controlled trials included in this review according to the Cochrane Collaboration's tool. Red: high risk, yellow: moderate risk, green: low risk, grey: no information or unclear risk.

(A) The effect size is mean difference

| Christina Chrysohoou et al. - a (2011) | $\rightarrow$ | 0.23 (0.16, 0.32) | 0.78 |
| :---: | :---: | :---: | :---: |
| Christina Chrysohoou et al. - b (2011) |  | 0.33 (0.15, 0.76) | 0.13 |
| Christina Chrysohoou et al. - c (2011) |  | 0.96 (0.43, 2.15) | 0.14 |
| MD Kontogianni et al. (2012) | - | 0.93 (0.88, 0.99) | 8.67 |
| Meiqi Zhou et al. - e (2022) |  | 0.04 (0.00, 0.60) | 0.01 |
| Tanya J Major et al. - a (2018) | + | 0.48 (0.38, 0.61) | 1.53 |
| Tanya J Major et al. - b (2018) | - | 0.68 (0.56, 0.84) | 1.87 |
| Tanya J Major et al. - c (2018) | $\pm$ | 0.42 (0.30, 0.59) | 0.75 |
| Tanya J Major et al. - d (2018) | $\rightarrow-$ | 0.56 (0.35, 0.90) | 0.40 |
| Tanya J Major et al. - e (2018) | $\rightarrow$ | 0.53 (0.29, 0.95) | 0.26 |
| Tanya J Major et al. - f (2018) | - | 0.84 (0.69, 1.01) | 2.22 |
| Ioanna Panagiota Kalafati et al. - b (2018) |  | 0.86 (0.75, 0.99) | 3.40 |
| Luisa Lampignano et al. (2021) | - | 0.97 (0.88, 1.07) | 5.27 |
| Giana Zarbato Longo et al. - c (2022) |  | 0.82 (0.67, 1.00) | 2.03 |
| Judith Heindel et al. - a (2020) | - | 0.96 (0.94, 0.97) | 12.52 |
| Judith Heindel et al. - b (2020) | - | 0.99 (0.97, 1.00) | 12.44 |
| Judith Heindel et al. - c (2020) | - | 0.98 (0.96, 0.99) | 12.42 |
| Farhad Vahid et al. - a (2023) | - | 0.99 (0.99, 1.00) | 12.80 |
| Farhad Vahid et al. - b (2023) | * | 0.96 (0.92, 1.00) | 9.97 |
| Farhad Vahid et al. - c (2023) | * | 0.96 (0.95, 0.98) | 12.39 |
| Overall ( 1 -squared $=91.1 \%, \mathrm{p}=0.000$ ) | , | 0.92 (0.89, 0.95) | 100.00 |
| NOTE: Weights are from random effects analysis | , |  |  |
| $\text { . } 00266$ | 1 |  |  |

(B) The effect size is odds ratio

Figure S3 Forest plot of plant-based dietary pattern and SUA.


Figure S4 Forest plot of animal-based dietary pattern and SUA.


Figure S5 Forest plot of mixed dietary pattern and SUA.


Figure S6 Funnel plot for the association between animal-based dietary pattern and SUA (effect value: mean difference) .


Figure S7 Funnel plot for the association between dietary patterns and SUA (effect value: coefficient).


Figure S8 Funnel plot for the association between dietary patterns and hyperuricemia (effect value: odds ratio).


Figure S9 Influence analysis for the association between animal-based dietary pattern and SUA (effect value: mean difference).

(A) Plant-based dietary pattern with SUA.

(B) Animal-based dietary pattern with SUA.

Figure S10 Influence analysis for the association between dietary patterns and SUA (effect value: odds ratio).

(A) Plant-based dietary pattern with hyperuricemia.

(B) Animal-based dietary pattern with hyperuricemia.

Figure S11 Influence analysis for the association between dietary patterns and hyperuricemia (effect value: odds ratio).

(A) Plant-based dietary pattern with SUA in interventional studies.

(B) Plant-based dietary pattern with SUA in cross-sectional studies.

Figure S12 Influence analysis for the association between plant-based dietary pattern and SUA (effect value: mean difference).


Figure S13 Forest plot of plant-based dietary pattern and SUA in cross-sectional studies (excluded studies of Pilar GuallarCastillón et al. and Ahmad Syauqy et al).

