Experimental	Polyphenol	Intervention	Maternal function and	Embryonic, fetal function	Potential	
model	consumption	period	outcomes	and outcomes	mechanisms	Reference
Human placenta,						
omental and						
subcutaneous						
adipose tissue	Resveratrol (200		↓inflammation; ↓insulin			
(GDM-like model)	μΜ)	20 hours	resistance	NA	NA	[1]
			îinsulin secretion; ↓blood			
		2 weeks	glucose; ↓body weight;			
	Resveratrol (60,	(1 time/day)	↓blood lipids; adipocytokines			
STZ-induced rat	120, and	from 8 days of	(↓leptin, ↑adiponectin,			
GDM model	240 mg/kg)	pregnancy	↓resistin, ↓TNF-α, ↓IL-6)	NA	NA	[2]
	Resveratrol (10	4 weeks before			↑AMPK signaling	
db/+ mouse GDM	mg/kg/day) by	pregnancy and	↓hyperglycemia; ↓insulin		pathway (↑p-AMPK,	
model	orally gavage	during pregnancy	resistance	↑litter size; ↓birth weight	↓p-HDAC4,	[3]

Supplementary Table 1. Experimental data of polyphenols in improving maternal and fetal outcomes of diabetes during pregnancy.

	Resveratrol (mixed					
	with the powdered					
	HFD diet to a					
HFD diet-induced	concentration of					
mosue GDM	0.2 %) by dietary From GD0 to		↓bodyweight; ↓blood glucose;		↑miR-23a-3p/NOV	
model	intervention	GD18	↓insulin intolerance	NA	axis	[4]
	Resveratrol-zinc					
	oxide complex					
	encapsulated with					
	chitosan (CS-ZnO-		↓blood glucose; ↑antioxidant			
	RS) (50, 100, and		activities; ↓inflammatory			
	200 mg/kg body		activity; ↓endoplasmic			
STZ-induced rat	weight) by orally	30, 60, 90 and	reticulum stress; ↓hepatic			
GDM model	gavage	120 hours	fibrosis	NA	NA	[5]

↓G6Pase)

				embryonic		
				⁺ Child youne		
				maldevelopment;		
				↓apoptosis; ↓caspases		
				activation; ↓oxidative		
STZ-induced rat	Resveratrol (100	For 10 days	↑blood glucose; ↑serum lipid	stress; [^] antioxidant status;		
model of diabetic	mg/kg b. wt.) via	(from day E3 to	profile; ↑outcome of diabetic	↓embryonic development		
embryopathy	gavage feeding	E12)	pregnancy	delay	NA	[6]
					↑RAR and RXR;	
					\uparrow RAR and RXR	
					DNA-binding	
STZ-induced rat	Resveratrol (100	For 10 days		↑neuronal marker proteins	activity; ↑ERK1/2,	
model of diabetic	mg/kg) via gavage	(from day E3 to		(GAP-43, total tau, and	JNK1/2 and p38	
embryopathy	feeding	E12)	NA	neurofilament B)	phosphorylation	[7]
STZ-induced rat	Resveratrol (100					
model of diabetic	mg/kg/day) by oral	From day E8 to		↓teratogenic effect;		
embryopathy	administration	E12	↓serum glucose	↓oxidative stress	NA	[8]

		From incubation				
Fertilized eggs		to embryo		↓developmental damage;		
cultured in high		development day		↓vascular injury; ↓oxidative		
glucose (HG; 0.4	Resveratrol (0.1, 1,	(EDD) 3.5 or		stress; cell cycle (↓p21,		
mmol/egg)	and 10 nmol/egg)	EDD5	NA	↑cyclin D1)	↑Pax3	[9]
					↑AMPK signaling	
	Curcumin (50 and				pathway (↑p-AMPK,	
db/+ mouse GDM	100 mg/kg/day) by	From GD0 to	↓glucose and insulin		↓p-HDAC4,	
model	orally gavage	GD20	intolerance; ↓oxidative stress	↑litter size; ↓birth weight	↓G6Pase)	[10]
Whole-embryo						
culture of mouse				↓NTD rate; ↓oxidative		
embryo in high				stress, nitrosative stress and		
glucose (HG; 300	Curcumin (0, 10			ER stress; ↓caspase		
mg/dL)	and 20 μ M)	24 or 36 hours	NA	activation	NA	[11]

Whole-embryo						
culture of mouse				↓NTD rate; ↓oxidative		
embryo in high				stress, nitrosative stress and		
glucose (HG; 300	Punicalagin (0, 10			ER stress; ↓caspase		
mg/dL)	and 20 μ mol/L)	24 or 36 hours	NA	activation	NA	[12]
			↓blood glucose; ↓insulin and		↑AMPK signaling	
			hepatic glycogen levels;		pathway (†p-AMPK,	
db/+ mouse GDM	Oleuropein (5 or 10	From GD0 to	↓oxidative stress;		↓p-HDAC4,	
model	mg/kg/day) by i.p.	GD20	↓inflammation	↓birth weight; ↑litter size	↓G6Pase)	[13]
db/+ mouse GDM	Naringenin (50	From GD0 to	↑insulin response; ↑glucose			
model	mg/kg)	GD20	metabolism	↑litter size; ↓litter weight	NA	[14]
	Naringenin	4 weeks before	↓bodyweight; ↓blood glucose;			
db/+ mouse GDM	(100 mg/kg/day) by	pregnancy and	↑glucose and insulin			
model	orally gavage	during pregnancy	tolerance; ↓inflammation	↓birth weight; ↑litter size		
C2Cl2 mouse	Naringenin		↓ROS; †GLUT4 membrane		-	
	(=0 (=)	2 (1				5 / 5 3

resistance model)						
Human placenta						
trophoblast HTR-						
8/SVneo cell and						
HUVEC culured					↓miR-140-3p,	
in medium with	Naringenin				↑insulin resistance	
insulin (1 ng/mL)	(50 µg/mL)	48 hours	NA	NA	signaling	[16]
Human placenta,						
VAT, and skeletal			↑glucose uptake;			
muscle (GDM-like	Naringenin (400		\downarrow inflammation; \uparrow antioxidant			
environment)	μΜ)	20 hours	activity			
			↑glucose tolerance;	-		
db/+ mouse GDM	Naringenin (50	From GD10 to	↑antioxidant expression;		†ΙκΒ-α, ↓ΝΓ-κΒ	
model	mg/kg/day) by i.p.	GD17	↑anti-Inflammatory	NA	pathway	[17]
STZ-induced rat	Quercetin (75	On days 0, 7, 14,	↓number of glycogen cells;			
GDM model	mg/kg) by orally	and 20 of the	↓histological abnormalities of	NA	NA	[18]

	gavage	gestation	placenta; †adiponectin;			
			↓adiponectin receptors			
			(AdipoR1 and AdipoR2)			
			↓placental necrosis,			
			inflammation, or hemorrhage;			
HFD diet-induced	Quercetin (700		↓labyrinthine placental			
mouse GDM	mg/d) by dietary	1 month before	vasculopathy; ↓lipid			
model	intervention	pregnancy	peroxidation	NA	NA	[19]
			↓blood glucose; ↑17β-			
STZ-induced	Quercetin		estradiol; ↑Igf1r, integrin		↑nuclear Wnt-β-	
mouse GDM	(30 mg/kg/day) by	4 weeks before	αvβ3, Cox2 genes; ↓Caspase-	↑development of	catenin signaling	
model	orally gavage	conception	3 gene; \downarrow inactive β -catenin	preimplantation embryo	pathway	[20]
STZ-induced						
mouse model of	Quercetin (100			↓NTD rate; ↓apoptosis;		
diabetic	mg/kg/day) via	From E7.5 to		\downarrow nitrosative stress and		
embryopathy	gavage feeding	E10.5	NA	oxidative stress	NA	[21]

Mouse embryonic						
neural stem cells						
cultured in high						
glucose (HG;	Q3M (2, 5, 10 and					
33 mM)	20 µM)	24 hours	NA	↓ROS		
STZ-induced						
mouse model of				↓NTD rate; ↓apoptosis;	↓NF-κB	
diabetic	Q3G (100 mg/kg)	From E6.5 to		↓intracellular stress	transcription	
embryopathy	via gavage feeding	E9.5	NA	conditions	regulation system	[22]
Human placenta,						
VAT and skeletal						
muscle (GDM-like	Nobiletin (100 or		↑glucose uptake;			
model)	200 µM)	Overnight or 3 h	↓inflammation			
	Nobiletin (daily	From GD1 to		_	↓NF-κB, Akt or	
db/+ mouse GDM	doses of 50 mg/kg)	GD17 or GD10	↑fasting glucose levels;		MAPK ERK1/2	
model	by oral gavage or	to GD17	↓inflammation	NA	activation	[23]

	i.p.					
Human placentae,						
primary amnion						
cell and primary	Apigenin (20 µM);					
myometrium cells	Curcumin (60 µM);					
(inflammation	Naringenin (400			↓NF-κB p65 binding		
model)	μΜ)	24 hours	↓pro-labour mediators	NA	activity	[24]
Human amnion,						
choriodecidua and						
myometrium					↓NF-κB RelA	
(inflammation			\downarrow pro-inflammatory and pro-		transcriptional	
model)	Honokiol (100 µM)	21 hours	labour mediators	NA	activity	[25]
Human villous	Baicalein (0, 5, 10,		↓inflammatory responses;		↓NF-κB signaling	
trophoblast cell	20, 50, and 100		↓apoptosis; mitochondrial		though miR-17-5p-	
lines HTR8	μΜ)	48 hours	fission (\downarrow p-Drp1, \uparrow Mfn1/2)	NA	Mfn1/2 pathway	[26]

cultured in high						
glucose (HG; 25						
mmol/L)						
STZ-induced	Baicalin					
mouse diabetic	(40 mg/kg) by					
model	intragastric gavage	For 10 days	↓hyperglycemia	NA		
				↑embryo development;	-	
				↓malformation of		
Chick embryos				cardiovascular system;		
cultured in high				↑cell proliferative;		
glucose (HG; 50	Baicalin (3, 6, 12	26, 39 and		↓apoptosis increase;		
mM)	and 24 μ M)	48 hours	NA	↓oxidative stresses	NA	[27]
					↓NF-κB p65 nuclear	
HFHS diet-	Procyanidins (27.8	4 weeks before	↓insulin resistance;		translocation and	
induced mouse	mg/kg) by orally	pregnancy and	↓inflammation;		NLRP3	
GDM model	gavage	during pregnancy	↑glycometabolism	NA	inflammasome	[28]

Fertilized eggs						
cultured in high	Proanthocyanidins					
glucose (HG; 0.2	(1 and 10	From EDD0 to		↓eye malformation;		
mmol/egg)	nmol/egg)	EDD3.5	NA	↓oxidative stress	↑Pax6	[29]
Human visceral						
(omental) adipose						
tissue from						
pregnant women	Protocatechuic acid		↑glucose uptake; ↑adiponectin		↑p38 MAPK	
pregnant women with GDM	Protocatechuic acid (100 µM)	1 or 18 hours	↑glucose uptake; ↑adiponectin release	NA	↑p38 MAPK activation	[30]
pregnant women with GDM	Protocatechuic acid (100 μM)	1 or 18 hours	<pre> ↑glucose uptake; ↑adiponectin release ↑oocyte maturation; ↑spindle</pre>	NA	↑p38 MAPK activation	[30]
pregnant women with GDM	Protocatechuic acid (100 μM)	1 or 18 hours	<pre> ↑glucose uptake; ↑adiponectin release ↑oocyte maturation; ↑spindle morphology and chromosome</pre>	NA	↑p38 MAPK activation	[30]
pregnant women with GDM	Protocatechuic acid (100 μM)	1 or 18 hours	<pre>↑glucose uptake; ↑adiponectin release ↑oocyte maturation; ↑spindle morphology and chromosome alignment; ↑mitochondrial</pre>	NA	↑p38 MAPK activation	[30]
pregnant women with GDM Oocytes from	Protocatechuic acid (100 μM) Tea polyphenols (0,	1 or 18 hours	<pre> ↑glucose uptake; ↑adiponectin release ↑oocyte maturation; ↑spindle morphology and chromosome alignment; ↑mitochondrial function; ↓ROS; ↓DNA</pre>	NA	↑p38 MAPK activation	[30]

activation

			↑oocyte maturation; ↑spindle			
			morphology and chromosome			
			alignment; \mitochondrial			
Oocytes from	EGCG (0, 20, 30 or		function; ↓ROS; ↓DNA			
diabetic mice	50 µM)	16 hours	damage	NA	NA	[32]
STZ-induced						
mouse model of	EGCG (1 or 10				↓methylation in CpG	
diabetic	μM) in drinking	From E3.5 to		↓NTD rate; ↓DNA	islands of Grhl3,	
embryopathy	water	E8.75 or E10.5	NA	methylation	Pax3, and Tulp3	[33]
Whole-conceptus						
culture of rat						
embryo in high						
glucose (HG; 500				↓embryonic vasculopathy;	↑Foxo3a and Akt	
mg/dl)	EGCG (1, 10 mM)	48 hours	NA	↓embryonic malformations	activation	[34]
STZ combined	Puerarin	Pregnancy until	↓pathological changes of		↓TLR4/MyD88/NF-	
with HFD diet-	(0.25g/kg/day) by	offspring were	pancreatic and liver tissues;	NA	κB signaling	[35]

induced rat GDM	intragastrically	born	↓glucose and lipid metabolism		pathway	
model	administration		disorders; ↓insulin resistance;			
			↓inflammatory mediators			
	Calycosin					
	(15 mg/kg or					
	30 mg/kg) by	From the day of	↓glucose intolerance; ↓insulin		↓RNF38/SHP-	
db/+ mouse GDM	intragastric	pregnancy to	resistance; ↓inflammation;		1/STAT3 signaling	
model	administration	GD18	\uparrow pancreatic β cells function	NA	pathway	[36]
			↑body weight; ↓insulin			
			resistance; ↓blood glucose;			
			↓FINS; biochemical criterion			
	Pomegranate		(\downarrow RBP4, Hcy, GA, FFA and			
	ellagic polyphenols		†11β-HSD2); ↓pathological			
	(50, 150, 300		damage of placenta and			
STZ-induced rat	mg/kg/day) by	14 days from	pancreatic tissues; ↓apoptosis;		↑PPAR signal	
GDM model	orally gavage	GD0 to GD14	↓APN and Chemerin;	↑weight of the fetal rats	pathway	[37]

↓inflammation-associated

proteins

	Ganoderma	From gestational				
	lucidum (100	day GD1 to		↑fetal head, thorax,		
STZ-induced rat	mg/kg/day) by oral	GD19 or GD9 to	↓glycemia; ↓lipid	craniocaudal and tail in		
GDM model	administration	GD19	peroxidation	fetuses	NA	[38]

GDM, gestational diabetes mellitus; STZ, streptozotocin; db/+, C57BL/KsJ-Lep^{db/+}; db/+, B6.BKS(D)-Lepr^{db/+}/J; HFD, high-fat diet; GD, gestational day; E,

embryonic day; EDD, embryo development day; i.p., intraperitoneal injection; HUVEC, human umbilical vein endothelial cell; VAT, visceral adipose tissue;

Q3M, 3-O-methylquercetin; Q3G, quercetin-3-glucoside; HFHS, high-fat-high-sucrose diet; EGCG, epigallocatechin gallate; EGCG, epigallocatechin-3-

gallate

References

- [1] Tran, H.T., Liong, S., Lim, R., Barker, G., and Lappas, M., Resveratrol ameliorates the chemical and microbial induction of inflammation and insulin resistance in human placenta, adipose tissue and skeletal muscle. PLoS One, (2017). 12(3): e0173373.
- [2] Zhang, G., Wang, X., Ren, B., Zhao, Q., and Zhang, F., The Effect of Resveratrol on Blood Glucose and Blood Lipids in Rats with Gestational Diabetes Mellitus. Evid Based Complement Alternat Med, (2021). 2021: 2956795.
- [3] Yao, L., Wan, J., Li, H., Ding, J., Wang, Y., Wang, X., and Li, M., Resveratrol relieves gestational diabetes mellitus in mice through activating AMPK. Reprod Biol Endocrinol, (2015). 13: 118.

- [4] Zheng, T. and Chen, H., Resveratrol ameliorates the glucose uptake and lipid metabolism in gestational diabetes mellitus mice and insulin-resistant adipocytes via miR-23a-3p/NOV axis. Mol Immunol, (2021). 137: 163-173.
- [5] Du, S., Lv, Y., Li, N., Huang, X., Liu, X., Li, H., Wang, C., and Jia, Y.F., Biological investigations on therapeutic effect of chitosan encapsulated nano resveratrol against gestational diabetes mellitus rats induced by streptozotocin. Drug Deliv, (2020). 27(1): 953-963.
- [6] Singh, C.K., Kumar, A., Hitchcock, D.B., Fan, D., Goodwin, R., LaVoie, H.A., Nagarkatti, P., DiPette, D.J., and Singh, U.S., Resveratrol prevents embryonic oxidative stress and apoptosis associated with diabetic embryopathy and improves glucose and lipid profile of diabetic dam. Mol Nutr Food Res, (2011). 55(8): 1186-96.
- [7] Singh, C.K., Kumar, A., LaVoie, H.A., DiPette, D.J., and Singh, U.S., Resveratrol prevents impairment in activation of retinoic acid receptors and MAP kinases in the embryos of a rodent model of diabetic embryopathy. Reprod Sci, (2012). 19(9): 949-61.
- [8] Trejo-González, N.L., Chirino-Galindo, G., and Palomar-Morales, M., [Antiteratogenic capacity of resveratrol in streptozotocin-induced diabetes in rats]. Rev Peru Med Exp Salud Publica, (2015). 32(3): 457-63.
- [9] Tan, R.R., Zhang, S.J., Tsoi, B., Huang, W.S., Zhuang, X.J., Chen, X.Y., Yao, N., Mao, Z.F., Tang, L.P., Wang, Q., Kurihara, H., Li, Y.F., and He, R.R., A natural product, resveratrol, protects against high-glucose-induced developmental damage in chicken embryo. J Asian Nat Prod Res, (2015). 17(5): 586-94.
- [10] Lu, X., Wu, F., Jiang, M., Sun, X., and Tian, G., Curcumin ameliorates gestational diabetes in mice partly through activating AMPK. Pharm Biol, (2019). 57(1): 250-254.
- [11] Wu, Y., Wang, F., Reece, E.A., and Yang, P., Curcumin ameliorates high glucose-induced neural tube defects by suppressing cellular stress and apoptosis. Am J Obstet Gynecol, (2015). 212(6): 802.e1-8.
- [12] Zhong, J., Reece, E.A., and Yang, P., Punicalagin exerts protective effect against high glucose-induced cellular stress and neural tube defects. Biochem Biophys Res Commun, (2015). 467(2): 179-84.
- [13] Zhang, Z., Zhao, H., and Wang, A., Oleuropein alleviates gestational diabetes mellitus by activating AMPK signaling. Endocr Connect, (2021). 10(1): 45-53.
- [14] Xing, B.H., Yang, F.Z., and Wu, X.H., Naringenin enhances the efficacy of human embryonic stem cell-derived pancreatic endoderm in treating gestational diabetes mellitus mice. J Pharmacol Sci, (2016). 131(2): 93-100.
- [15] Li, S., Zhang, Y., Sun, Y., Zhang, G., Bai, J., Guo, J., Su, X., Du, H., Cao, X., Yang, J., and Wang, T., Naringenin improves insulin sensitivity in gestational diabetes mellitus mice through AMPK. Nutr Diabetes, (2019). 9(1): 28.
- [16] Zhao, C., Zhao, C., and Zhao, H., Defective insulin receptor signaling in patients with gestational diabetes is related to dysregulated miR-140 which can be improved by naringenin. Int J Biochem Cell Biol, (2020). 128: 105824.
- [17] Nguyen-Ngo, C., Willcox, J.C., and Lappas, M., Anti-Diabetic, Anti-Inflammatory, and Anti-Oxidant Effects of Naringenin in an In Vitro Human Model and an In Vivo Murine Model of Gestational Diabetes Mellitus. Mol Nutr Food Res, (2019). 63(19): e1900224.
- [18] Mahabady, M.K., Shamsi, M.M., Ranjbar, R., Tabandeh, M.R., and Khazaeel, K., Quercetin improved histological structure and upregulated adiponectin and adiponectin receptors in the placenta of rats with gestational diabetes mellitus. Placenta, (2021). 106: 49-57.

- [19] Liang, C., DeCourcy, K., and Prater, M.R., High-saturated-fat diet induces gestational diabetes and placental vasculopathy in C57BL/6 mice. Metabolism, (2010). 59(7): 943-50.
- [20] Bolouki, A., Zal, F., and Alaee, S., Ameliorative effects of quercetin on the preimplantation embryos development in diabetic pregnant mice. J Obstet Gynaecol Res, (2020). 46(5): 736-744.
- [21] Cao, L., Tan, C., Meng, F., Liu, P., Reece, E.A., and Zhao, Z., Amelioration of intracellular stress and reduction of neural tube defects in embryos of diabetic mice by phytochemical quercetin. Sci Rep, (2016). 6: 21491.
- [22] Tan, C., Meng, F., Reece, E.A., and Zhao, Z., Modulation of nuclear factor-κB signaling and reduction of neural tube defects by quercetin-3-glucoside in embryos of diabetic mice. Am J Obstet Gynecol, (2018). 219(2): 197.e1-197.e8.
- [23] Nguyen-Ngo, C., Salomon, C., Quak, S., Lai, A., Willcox, J.C., and Lappas, M., Nobiletin exerts anti-diabetic and anti-inflammatory effects in an in vitro human model and in vivo murine model of gestational diabetes. Clin Sci (Lond), (2020). 134(6): 571-592.
- [24] Lim, R., Barker, G., Wall, C.A., and Lappas, M., Dietary phytophenols curcumin, naringenin and apigenin reduce infection-induced inflammatory and contractile pathways in human placenta, foetal membranes and myometrium. Mol Hum Reprod, (2013). 19(7): 451-62.
- [25] Wijesuriya, Y.K. and Lappas, M., Potent anti-inflammatory effects of honokiol in human fetal membranes and myometrium. Phytomedicine, (2018). 49: 11-22.
- [26] Li, J., Wang, Y., Wu, T., Li, S., Sun, Y.N., and Liu, Z.H., Baicalein suppresses high glucose-induced inflammation and apoptosis in trophoblasts by targeting the miRNA-17-5p-Mfn1/2-NF-κB pathway. Placenta, (2022). 121: 126-136.
- [27] Wang, G., Liang, J., Gao, L.R., Si, Z.P., Zhang, X.T., Liang, G., Yan, Y., Li, K., Cheng, X., Bao, Y., Chuai, M., Chen, L.G., Lu, D.X., and Yang, X., Baicalin administration attenuates hyperglycemia-induced malformation of cardiovascular system. Cell Death Dis, (2018). 9(2): 234.
- [28] Liu, Y., Sun, R., Lin, X., Wu, L., Chen, H., Shen, S., Li, Y., Wei, Y., and Deng, G., Procyanidins and its metabolites by gut microbiome improves insulin resistance in gestational diabetes mellitus mice model via regulating NF-κB and NLRP3 inflammasome pathway. Biomed Pharmacother, (2022). 151: 113078.
- [29] Tan, R.R., Zhang, S.J., Li, Y.F., Tsoi, B., Huang, W.S., Yao, N., Hong, M., Zhai, Y.J., Mao, Z.F., Tang, L.P., Kurihara, H., Wang, Q., and He, R.R., Proanthocyanidins Prevent High Glucose-Induced Eye Malformation by Restoring Pax6 Expression in Chick Embryo. Nutrients, (2015). 7(8): 6567-81.
- [30] Scazzocchio, B., Filardi, T., Varì, R., Brunelli, R., Galoppi, P., Morano, S., Masella, R., and Santangelo, C., Protocatechuic acid influences immunemetabolic changes in the adipose tissue of pregnant women with gestational diabetes mellitus. Food Funct, (2021). 12(16): 7490-7500.
- [31] Lu, J., Zhao, S.X., Zhang, M.Y., Ji, P.Y., Chao, S., Li, L.J., Yin, S., Zhao, L., Zhao, H., Sun, Q.Y., and Ge, Z.J., Tea polyphenols alleviate the adverse effects of diabetes on oocyte quality. Food Funct, (2022). 13(9): 5396-5405.
- [32] Chao, S., Li, L.J., Lu, J., Zhao, S.X., Zhao, M.H., Huang, G.A., Yin, S., Shen, W., Sun, Q.Y., Zhao, Y., Ge, Z.J., and Zhao, L., Epigallocatechin gallate improves the quality of diabetic oocytes. Biomed Pharmacother, (2023). 159: 114267.
- [33] Zhong, J., Xu, C., Reece, E.A., and Yang, P., The green tea polyphenol EGCG alleviates maternal diabetes-induced neural tube defects by inhibiting DNA hypermethylation. Am J Obstet Gynecol, (2016). 215(3): 368.e1-368.e10.

- [34] Yang, P. and Li, H., Epigallocatechin-3-gallate ameliorates hyperglycemia-induced embryonic vasculopathy and malformation by inhibition of Foxo3a activation. Am J Obstet Gynecol, (2010). 203(1): 75.e1-6.
- [35] Xu, W., Tang, M., Wang, J., and Wang, L., Anti-inflammatory activities of puerarin in high-fat diet-fed rats with streptozotocin-induced gestational diabetes mellitus. Mol Biol Rep, (2020). 47(10): 7537-7546.
- [36] Li, Y., Duan, B., Li, Y., Yu, S., and Wang, Y., The isoflavonoid calycosin inhibits inflammation and enhances beta cell function in gestational diabetes mellitus by suppressing RNF38 expression. Immunopharmacol Immunotoxicol, (2020). 42(4): 366-372.
- [37] Sun, Y.L., Zhou, F.M., and Wang, H.R., Mechanism of pomegranate ellagic polyphenols reducing insulin resistance on gestational diabetes mellitus rats. Am J Transl Res, (2019). 11(9): 5487-5500.
- [38] Viroel, F.J.M., Laurino, L.F., Caetano É, L.A., Jozala, A.F., Spim, S.R.V., Pickler, T.B., Sercundes, M.K., Gomes, M.C., Hataka, A., Grotto, D., and Gerenutti, M., Ganoderma lucidum Modulates Glucose, Lipid Peroxidation and Hepatic Metabolism in Streptozotocin-Induced Diabetic Pregnant Rats. Antioxidants (Basel), (2022). 11(6).