Supplementary Material

Synbiotic formulation of *Lactobacillus reuteri* and inulin alleviates ASD-like behaviors in a mouse model: the mediating role of the gut-brain axis

Chuanchuan Wang^{†1, 2}, Weixuan Chen^{†1}, Yishan Jiang¹, Xiao Xiao¹, Qianhui Zou¹, Jiarui Liang¹, Yu

Zhao¹, Qianxu Wang¹, Tian Yuan^{2, 3}, Rui Guo^{1, 2*}, Xuebo Liu^{1*}, Zhigang Liu^{1, 2*}

1 Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.

2 Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518000, China.

3 Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.

E-mail address: <u>chuanwang@nwafu.edu.cn</u> (C.W.), <u>chenweixuan@nwafu.edu.cn</u> (W.C.), jiangyishan@nwafu.edu.cn (Y.J.), <u>xiaoxiaonah@nwafu.edu.cn</u> (X.X.), <u>zouqianhui@nwafu.edu.cn</u> (Q.Z.), <u>liangjiarui@nwafu.edu.cn</u> (J.L.), <u>yuzhao029@nwafu.edu.cn</u> (Y.Z.), wangqianxu@nwafu.edu.cn (Q.W.), <u>tian.yuan@nwsuaf.edu.cn</u> (T.Y.), <u>ruiguo@nwafu.edu.cn</u> (R.G.), <u>xueboliu@nwsuaf.edu.cn</u> (X.L.), <u>zhigangliu@nwsuaf.edu.cn</u> (Z.L.)

[†] These authors have contributed equally to this work and share first authorship

* Corresponding authors.

Supplementary Table and Figures

Concentration (g/L)	5	10	20	30	40
GAM/mL	5	5	5	5	5
Carbon source/g	0.025	0.050	0.100	0.150	0.200

	Table S1	Formulation of ca	rbon source adde	ed to the	culture medium
--	----------	-------------------	------------------	-----------	----------------

Table S2 P	Primer sequences	used for sem	i-quantitative	RT-PCR	analysis
------------	------------------	--------------	----------------	--------	----------

	Forward 5'-3'	Reverse 5'-3'
GAPDH	TGGAGAAACCTGCCAAGTATGA	TGGAAGAATGGGAGTTGCTGT
ZO-1	TGGGAACAGCACACAGTGAC	GCTGGCCCTCCTTTTAACAC
Claudin-1	AGCTGCCTGTTCCATGTACT	CTCCCATTTGTCTGCTGCTC
GPR43	GGCTCCCTGCCAACCTGCTG	GTGCACAGGGGCAGGCTGAG
IL-1β	AGCTGGAGAGTGTGGATCCC	CCTGTCTTGGCCGAGGACTA
Tnf-α	CCCTCACACTCAGATCATCTTCT	GCTACGACGTGGGCTACAG
IL-6	CCACTTCACAAGTCGGAGGC	GGAGAGCATTGGAAATTGGGGT
IL-10	GCTCCAAGACCAAGGTGTCTACAA	CCGTTAGCTAAGATCCCTGGATCA
ShAnk3	GATCTGCCATCCCTACAAC	AGCTAAGGGTGAGCTAGGAT
SNAP25	CAACTGGAACGCATTGAGGAA	GGCCACTACTCCATCCTGATTAT
PTEN	TGGATTCGACTTAGACTTGACCT	GCGGTGTCATAATGTCTCTCAG

Mecp2	ATGGTAGCTGGGATGTTAGGG	TGAGCTTTCTGATGTTTCTGCTT
BDNF	CTCCGCCATGCAATTTCCACT	GCCTTCATGCAACCGAAGTA
PSD-95	TCTGTGCGAGAGGTAGCAGA	AAGCACTCCGTGAACTCCTG
Mct1	CAGTGCAACGACCAGTGAAG	AGTTGAAAGCAAGCCCAAGA
Gpr109a	GGGTCCTACCTAGCCTGTCC	GGCTAACCCCCTCTTACCAC
Gpr41	GTGACCATGGGGACAAGCTTC	CCCTGGCTGTAGGTTGCATT
Hmgcs2	ATACCACCAACGCCTGTTATGG	CAATGTCACCACAGACCACCAG
Hmgcl	CAGGTGAAGATCGTGGAAGTC	TGGGAGAAACAAAGCTGGTG
Bdh1	GCTTCCTTGTATTTGCTGGC	TTCTCCACCTCTTCACTGTTG
bacteria	ACTCCTACGGGAGGCAGCAG	ATTACCGCGGCTGCTGG
L. reuteri	GAAGATCAGTCGCAYTGGCCCAA	TCCATTGTGGCCGATCAG

Table S3 R function envfit was used to coordinates of microbial communities (PCoA)

OUT	plsda1	plsda2	R square	p value	Taxonomy
OTU39	-0.744263178	-0.667886458	0.592218753	0.001	Bacteria;Proteobacteria;Deltaproteobacteria;Desulfovibrionales;Desulfovibrionaceae;Desulfovibrio
OTU231	0.165561759	-0.986199424	0.526974891	0.001	Bacteria, Firmicutes; Clostridia, Clostridiales
OTU600	0.889665336	-0.456613172	0.463116376	0.001	Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae
OTU403	0.993594288	-0.113006153	0.429620101	0.001	Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae

OTU116	0.956258367	-0.292523393	0.40501793	0.001	Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae
OTU26	0.983206755	-0.182495143	0.39978134	0.001	Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae;Barnesiella;Barnesiella_intestinih ominis
OTU31	0.964582904	-0.263779873	0.36640954	0.001	Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Prevotellaceae;Prevotella
OTU138	-0.450785064	-0.892632526	0.363562822	0.001	Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae
OTU487	0.993359737	-0.115049695	0.360608945	0.001	Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales;Porphyromonadaceae
OTU356	0.994762976	0.102208711	0.359997072	0.001	Bacteria;Actinobacteria;Actinobacteria;Coriobacteriales;Coriobacteriaceae

Figure S1 Effect of different carbon sources on the growth curve of L. reuteri C501

(A-E) Growth curves of *L. reuteri* C501 containing different concentrations of carbon source, 5 g/L (A), 10 g/L (B), 20 g/L (C), 30 g/L (D), and 40 g/L (E) (n = 3).

Figure S2 Effect of different doses of inulin on the growth curve of *L. reuteri* C501(A) Growth curves of *L. reuteri* C501 with different concentrations of inulin (n = 3).

Figure S3 Effect of optimal dose of inulin on the growth curves of *L. reuteri* C501 in different concentrations

(A) Growth curves of *L. reuteri* C501 at 20 g/L inulin on different concentrations (n = 3).

Figure S4 Interaction time in the three-chamber test

(A-B) The original interaction time of each groups for empty wire cup, mouse (mouse) and novel mouse (mouse 2)

Figure S5 Effects of VPA-induced ASD mice on gut microbiota diversity

(A) Volcano plot of different OTUs between CON and ASD groups (n = 9-10). (B) Linear Discriminant Analysis of CON and ASD groups (n = 9-10).

Figure S6 Effects of synbiotic treatment on serum metabolites in VPA-induced ASD mice (A-I) The concentrations of metabolites Acetic acid, Hippuric acid, L-alpha-Aminobutyric acid, 3-Hydroxybutyric acid, N-acetyltryptophan, and Malonic acid in the serum (n = 9-10).

Data are presented as mean \pm SEM and statistical analyses were determined by one-way ANOVA with Tukey's test. *p < 0.05, **p < 0.01.

Figure S7 Effects of synbiotic treatment on SCFAs receptors in VPA-induced ASD mice (A-B) The mRNA expression of *GPR41* and *GPR43* in the colon (n = 3-4).

Data are presented as mean \pm SEM and statistical analyses were determined by one-way ANOVA with Tukey's test. *p < 0.05, **p < 0.01.