Supplementary tables

Table 1 Comparison of the nutritional ingredient of germinated brown rice and

refined rice

Nutrients	Refined rice	Germinated brown rice
Protein (g/100 g)	$6.80\pm0.05^{\rm a}$	$7.30\pm0.29^{\rm a}$
Fat (g/100 g)	$1.30\pm0.03^{\text{b}}$	$2.90\pm0.14^{\rm a}$
Carbohydrate (g/100 g)	$78.0 \pm 1.18^{\rm a}$	$76.2\pm1.59^{\rm a}$
Dietary fiber (g/100 g)	$0.74\pm0.35^{\text{b}}$	$2.80\pm0.56^{\rm a}$
Insoluble dietary fiber (g/100 g)	$0.63\pm0.21^{\text{b}}$	$2.21\pm0.17^{\rm a}$
Soluble dietary fiber (g/100 g)	$0.11\pm0.08^{\text{b}}$	$0.59\pm0.06^{\rm a}$
VB ₁ (mg/100 g)	$0.12\pm0.02^{\text{b}}$	$0.30\pm0.09^{\rm a}$
VE (mg/100 g)	$0.40\pm0.06^{\text{b}}$	$1.70\pm0.06^{\mathrm{a}}$
γ-aminobutyric acid (mg/100 g)	$1.50\pm0.11^{\text{b}}$	$16.5\pm0.61^{\rm a}$
Inositol hexaphosphate (mg/100 g)	$0.03\pm0.02^{\text{b}}$	$0.11\pm0.04^{\rm a}$
Mg (mg/100 g)	$33.0\pm0.98^{\text{b}}$	$74.0\pm1.35^{\rm a}$
Fe (mg/100 g)	0.50 ± 0.23^{b}	$1.10\pm0.08^{\mathrm{a}}$
Ca (mg/100 g)	$6.00\pm0.28^{\rm a}$	$8.10\pm0.24^{\rm a}$

The results are presented as mean \pm standard deviation (n=3), and the values in each

line with different letters are significantly different (p < 0.05).

	Experimental group ^a			
Ingredient (%)	Con	HFD	HFD+GBR	
Soybean meal	18.0	18.0	18.0	
Fish meal	10.0	10.0	10.0	
Soybean oil	3.0	3.0	3.0	
Wheat bran	5.0	3.0	3.0	
Maltodextrin	2.0	2.0	2.0	
Alfalfa Powder	2.0	2.0	2.0	
Beer yeast powder	1.0	1.0	1.0	
Minerals, vitamins, etc	1.0	1.0	1.0	
Wheat	10.0	-	-	
Corn	2.0	-	-	
Lard oil	-	10	10	
Yolk powder	-	5	5	
Whole milk powder	-	4	4	
Cholesterol	-	1	1	
Sodium cholate	-	0.2	0.2	
Refined rice	40	40	-	
Germinated brown rice	-	-	40	
	gm% kcal%	gm% kcal%	gm% kcal%	
Protein	20 17.9	20.5 15.7	20.5 15.7	
Carbohydrate	69 61.9	53.5 41.1	53.5 41.1	
Fat	10 20.2	25 43.2	25 43.2	
Total calories (kcal/gm)	4.46	5.21	5.21	

Table 2 Composition of experimental diets

^aThe Con group: a normal chow diet based on 40.0 % (w/w) refined rice; the HFD group: a high-fat diet based on 40.0% (w/w) refined rice; the HFD+GBR group: a high-fat diet based on 40.0% (w/w) germinated brown rice.

Gene name	Forward primer (5' to 3')	Reverse primer (5' to 3')
β -actin	ATC ATG TTT GAG ACC TTC AAC ACC	AGA GCA ACA TAG CAC AGC TTC TCT T
Pcsk9	CAT TGT GGT GCT GAT GGA GGA GAC	CCA ACA GGT CAC TGC TCA TCT TCA C
Hmgcr	TTG GTC CTT GTT CAC GCT CAT AGT C	TCA CTT GCT CAA TGT CCA TGC TGA T
Srebp-2	AGC GGT GGA GTC CTT GGT GAA	CGG AAC TGC TGG AGA ATG GTG AG
Apob	ATC AAG GCT GGT GTA AGA CTG GAA	TGA CTC GTG GAA GAA GTT GGT GTT
	Т	
Abcal	AGT CCT ATG TGT CCT CTA CCA ACC T	ACT GCC ATT GAT GCC GAT GAA GA
Ldlr	GTC TGT CAC CTG TCA GTC CAA TCA A	CCA TCC TGG CAT CGG AAG TCA TC
Cyp7a1	GCT GTG GTA GTG AGC TGT TG	GTT GTC CAA AGG AGG TTC ACC
Lxra	TCT TCC GCC GCA GTG TCA TCA	GTT CCT CTT CTT GCC GCT TCA GTT
Zo-1	GCC GCT AAG AGC ACA GCA A	TCC CCA CTC TGA AAA TGA GGA
Claudin-1	GGG GAC AAC ATC GTG ACC G	AGG AGT CGA AGA CTT TGC ACT
Il-6	GAG CCC ACC AAG AAC GAT A	TTG TCA CCA GCA TCA GTC C
Π-1β	CCT TCC AGG ATG AGG ACA TGA	TGA GTC ACA GAG GAT GGG CTC
Leptin	ATG TTC AAG CAG TGC CTA TCC AGA A	CAG GAA TGA AGT CCA AGC CAG TGA
Adiponectin	CGG CAG CAC TGG CAA GTT CTA	TCC TGA TAC TGG TCG TAG GTG AAG A
Resistin	ACT TCA ACT CCC TGT TTC CAA ATG C	GCT CAA GAC TGC TGT GCC TTC T
Tnfα	CGGTGCCTATGTCTCAGCCTCTTCT	TGGTGGTTTGTGAGTGTGAGGGTCT
Inos	GACGAGACGGATAGGCAGAGATTG	GAACTCTTCAAGCACCTCCAGGAA

Table 3 L	List of PCR	primer sec	uences for	RT-qPCR
		p		

Cox2	CAATGGGCTGGAAGACATATCA	GCCAGGGCTGAACTTCGAA
Cat	AGGTGTTGAACGAGGAGGAGAGG	TCAGCGTTGTACTTGTCCAGAAGAG
Sod1	AGCGGTGAACCAGTTGTGTGTTGTC	AGTCACATTGCCCAGGTCTCCAA
Ucp2	CGAAGCCTACAAGACCAT	CTCAGCACAGTTGACAATG
Accl	AATGTGGTTGTTCTGAATGGCTGTG	TGCTGAGTGATGGCTCCGTAGT
Fasn	CCGTGTGACCGCCATCTATATCG	CGTGAGGTTGCTGTCGTCTGTAG
Dgatl	GCTATCCAGACAACCTGACCTACC	AAGAGCATCTCAAGAACTCGTCGTA
Srebp1c	GCCATCGACTACATCCGCTTCTT	TGCCTCCTCCACTGCCACAA
Cd36	TTGCGACATGATTAATGGCACAGAC	TCCGAACACAGCGTAGATAGACCT
Ppara	AGAATCCACGAAGCCTACCTGAAGA	GGAAGAATCGGACCTCTGCCTCT
Ppary	CTGTTCGCCAAGGTGCTCCA	GGCTCATGTCTGTCTCTGTCTTCTT
Atgl	CCTTCGCAATCTCTACCGCCTCT	CTCCACCACAGCAGCTTCCTCT
Hsl	CACGGCGGCTGTCTAATGTCTT	TGGTGTCTCTGTGTCCAGGTCAA
Cpt1	CACAACAACGGCAGAGCAGAG	GGACACCACATAGAGGCAGAAGA
Acoxl	CCACCGCCTATGCCTTCCACTT	CACCGCAAGCCATCCGACATTC
Pdk4	CCTGCCTGACCGCTTAGTGAAC	CCAGGATGCCTTGAGCCATTGTAG
Nrfl	GATGGCACCGTGTCGCTCAT	ATGCTTGCGTCGTCTGGATGG
Tfam	CTTCCAGGAGGCAAAGGATGATTCG	ATCACTTCGTCCAACTTCAGCCATC
Sirt1	GAGACGGTATCTATGCTCGCCTTG	TGACACAGAGACGGCTGGAACT
Pgcla	GAGTGTGCTGCTCTGGTTGGT	AGGCTCATTGTTGTACTGGTTGGAT

Sample\Info Seq num Base num Mean length Min length Max length Con1 417.175038 Con2 423.374074 Con3 418.054575 Con4 422.69022 Con5 418.811997 Con6 418.50143 HFD1 426.920601 HFD2 422.340258 HFD3 424.183366 HFD4 420.221275 HFD5 423.85311 HFD6 423.055758 HFD+GBR1 420.591632 HFD+GBR2 46417 417.097357 HFD+GBR3 50144 419.529934 HFD+GBR4 35127 424.965155 HFD+GBR5 46547 423.809741 HFD+GBR6 49366 420.457542

Table 4 The table of the number of reads for each sample analyzed for sequencing

Supplementary figures

Fig.S1 LEfSe multi-level species difference discriminant analysis was applied to discriminate the gut microbiota between the HFD group and the HFD+GBR group (Log LDA > 2.0)

Heatmap of Pathway Level3

			Metabolic pathways	
			Biosynthesis of secondary metabolites	
	-		Microbial metabolism in diverse environments	
			Biosynthesis of amino acids	
	2		Carbon metabolism	
			Bibosome	
			ABC transporters	
	-		Purine metabolism	
			Two-component system	
			Amino sugar and nucleotide sugar metabolism	
			Starch and sucrose metabolism	
			Glycolysis / Gluconeogenesis	
			Ouorum sensing	
			Pyrimidine metabolism	
			Aminoacyl-tRNA biosynthesis	
			Pyruvate metabolism	
			Cysteine and methionine metabolism	
			Alanine, aspartate and glutamate metabolism	
			Homologous recombination	
			Glycine, serine and threonine metabolism	
			Peptidoglycan biosynthesis	
			Galactose metabolism	
			Pentose phosphate pathway	
			Methane metabolism	
			Mismatch repair	
			Oxidative phosphorylation	
			Fructose and mannose metabolism	6.8 -
			Carbon fixation pathways in prokaryotes	
			Phosphotransferase system (PTS)	6.6 -
			DNA replication	0.0
			2-Oxocarboxylic acid metabolism	
			Protein export	6.4 -
			Glyoxylate and dicarboxylate metabolism	
			RNA degradation	63
			Lysine biosynthesis	0.2 -
			Phenylalanine, tyrosine and tryptophan biosynthesis	
			Bacterial secretion system	6.0 -
			Carbon fixation in photosynthetic organisms	
			Butanoate metabolism	
			Propanoate metabolism	5.8 -
			Terpenoid backbone biosynthesis	_
			Cell cycle - Caulobacter	56.
			One carbon pool by folate	5.0
			Pantothenate and CoA biosynthesis	
			Giycerophospholipid metabolism	5.4 -
			Citrate cycle (TCA cycle)	
			Argining biosynthesis	5.2
			Fatty acid motabolism	5.2 -
			Thiamine metabolism	
			manne metabolism	
tol	20	8		
uo.	Ŧ	E.		
0		FD		
		4		

Fig.S2 The KEGG pathway in level-3 functional prediction by PICRUSt2 (n=10)

Fig.S3 PICRUSt function Prediction. The OTU abundance table was standardized by PICRUSt to remove the influence of 16S marker gene copy number in the genome of the species. Then, COG and KEGG functional annotation of OTU were performed through the corresponding greengene id of each OTU, and the annotation information of OTU at each COG and KEGG functional level and the abundance information of each function in different samples were obtained.

