Electronic Supplementary Material (ESI) for Food & Function. This journal is © The Royal Society of Chemistry 2024

				Fig .	raw data				
0 week	-fasting	blood g	lucose (mM)	1 weel	k-fasting	blood g	lucose (mM)
	NG	DG	LF-DG	HF-DG		NG	DG	LF-DG	HF-DG
	3.5	21.4	21.6	21.3		4.3	28.5	19.4	18.5
	3.8	21.6	20.4	20.5		3.4	20.9	18.8	26.2
	3.6	18.2	19.3	18.2		4.7	23.9	16.3	21.6
	3.8	18.0	18.4	18.8		4.5	17.4	26.8	20.8
	3.9	18.1	18.1	18.9		4.0	17.5	22.2	21.8
	4.8	17.4	18.0	17.0		5.2	20.1	21.3	16.1
	4.5	17.8	17.6	17.8		4.4	23.3	21.4	24.2
	5.0	17.3	17.2	17.9		5.9	30.5	23.3	21.7
	5.1	23.9	23.1	23.9		4.2	19.0	20.2	21.8
	5.3	23.9	24.1	23.4		5.1	22.9	22.9	27.2
		16.8	16.7	16.9			22.6	21.1	18.7
		16.9	16.9	16.8			25.1	27.9	20.5
Mean	4.3	19.3	19.3	19.3	Mean	4.6	22.6	21.8	21.6
Menn	4.5	17.0	17.5	17.0	Мен	4.0	22.0	21.0	21.0
				(75)				•	(>5)
2 weeks			glucose		3 week	s-fasting			
	NG	DG	LF-DG	HF-DG		NG	DG	LF-DG	HF-DG
	3.4	20.5	19.1	17.9		5.3	21.3	20.5	18.1
	4.7	20.2	15.0	19.1		3.2	23.3	19.5	22.7
	2.8	26.6	19.7	19.0		4.8	25.2	21.8	17.6
	3.2	25.6	17.1	16.8		3.9	29.5	21.7	20.8
	4.0	20.8	17.8	20.7		4.2	21.7	20.0	19.1
	4.3	21.5	20.5	18.5		2.8	23.3	14.4	18.4
	4.2	16.9	21.8	19.7		3.1	19.3	13.3	19.8
	4.7	24.2	22.0	15.8		3.9	19.1	19.1	19.8
	3.2	18.2	21.3	19.4		3.3	17.5	18.3	14.9
	5.6	21.7	18.0	22.5		3.2	21.2	22.2	21.7
		24.2	19.2	18.8			27.1	17.1	18.9
		20.2	22.0	22.5			21.5	18.6	13.6
Mean	4.0	21.7	19.5	19.2	Mean	3.8	22.5	18.9	18.8
4 wee			lucose (n						
	NG	DG	LF-DG	HF-DG					
	3.4	19.1	19.6	17.8					
	5.7	20.1	18.9	21.2					
	3.5	28.4	16.6	17.7					
	3.7	28.1	19.9	16.3					
	3.9	24.8	18.7	19.5					
	2.9	26.0	20.7	21.9					
	3.6	20.0	22.5	17.5					
	4.5	21.1	18.3	18.8					
		22.0		17.2					
	3.5	22.9							
	3.5 3.9	22.9							
		22.9							
		22.9							

	Fig.	3B raw	data	
	Glycosylat	ed hemoglob	in (ng/mL)	
	NG	DG	LF-DG	HF-DG
	115.8	322.3	187.9	180.8
	221.0	236.7	237.9	200.6
	192.7	332.0	312.5	176.5
	192.5	257.2	174.1	163.5
	194.4	317.6	239.8	243.2
	119.4	236.4	207.5	229.1
	115.0	335.0	288.5	187.0
	142.4	337.4	299.5	164.4
	186.2	359.3		228.8
	133.6			
Mean	161.3	303.8	243.5	197.1
		1		

				Fig.	3C raw data				
1 week-Av	erage foo	d intake o	f each mo	use (g)	2 week-Av	erage foo	d intake o	f each mo	use (g)
	NG	DG	LF-DG	HF-DG		NG	DG	LF-DG	HF-DG
	24.7	41.8	40.8	43.2		25.1	51.8	48.3	52.1
	24.7	41.8	40.8	43.2		25.1	51.8	48.3	52.1
.	24.7	41.8	40.8	43.2	T: 4	25.1	51.8	48.3	52.1
First cage	24.7	41.8	40.8	43.2	First cage	25.1	51.8	48.3	52.1
	24.7	41.8	40.8	43.2		25.1	51.8	48.3	52.1
		41.8	40.8	43.2			51.8	48.3	52.1
	23.7	43.1	42.9	40.4		24.3	50.9	51.0	48.2
	23.7	43.1	42.9	40.4		24.3	50.9	51.0	48.2
G 1	23.7	43.1	42.9	40.4	C1	24.3	50.9	51.0	48.2
Second cage	23.7	43.1	42.9	40.4	Second cage	24.3	50.9	51.0	48.2
	23.7	43.1		42.9 40.4		24.3	50.9	51.0	48.2
		43.1	42.9	40.4			50.9	51.0	48.2
Mean	24.2	42.5	41.9	41.8	Mean	24.7	51.4	49.7	50.2
3 week-Av	erage foo	d intake o	f each mo	use (g)	4 week-Av	erage foo	d intake o	f each mo	use (g)
	NG	DG	LF-DG	HF-DG		NG	DG	LF-DG	HF-DG
	23.9	47.6	46.9	49.6		24.7	50.3	45.7	48.3
	23.9	47.6	46.9	49.6		24.7	50.3	45.7	48.3
First cage	23.9	47.6	46.9	49.6	First cage	24.7	50.3	45.7	48.3
rust cage	23.9	47.6	46.9	49.6	First cage	24.7	50.3	45.7	48.3
	23.9	47.6	46.9	49.6		24.7			48.3
		47.6	46.9	49.6					
	25.2	49.4	47.8	46.8		25.3	46.8	47.2	45.6
	25.2	49.4	47.8	46.8		25.3	46.8	47.2	45.6
Second cage	25.2	49.4	47.8	46.8	Second cage	25.3	46.8	47.2	45.6
Second Cage	25.2	49.4	47.8	46.8	Second Cage	25.3	46.8	47.2	45.6
	25.2	49.4	47.8	46.8		25.3	46.8		
		49.4	47.8	46.8					
Mean	24.5	48.5	47.4	48.2	Mean	25.0	48.4	46.5	47.1

	Fig .	3D raw	data	
	Serur	n insulin (n	nIU/L)	
	NG	DG	LF-DG	HF-DG
	27.6	20.0	22.9	31.6
	39.6	17.8	20.8	26.8
	31.1	14.3	27.1	20.2
	38.8	14.6	19.7	26.2
	36.1	15.1	27.8	27.4
	29.2	13.0	20.9	34.0
	39.4	13.7	26.7	35.4
	37.1	22.9	23.2	20.3
	29.9	19.3		30.4
	34.2			
Mean	34.3	16.8	23.6	28.0

	Fig .3	E raw da	ata	
A	verage fo	od efficier	ıcy (%)	
	NG	DG	LF-DG	HF-DG
	4.1684	0.2219	-1.2429	0.1380
	4.1684	0.2219	-1.2429	0.1380
First cage	4.1684	0.2219	-1.2429	0.1380
	4.1684	0.2219	-1.2429	0.1380
	4.1684			0.1380
	2.5401	-0.2716	0.6838	-0.0230
	2.5401	-0.2716	0.6838	-0.0230
Second cage	2.5401	-0.2716	0.6838	-0.0230
	2.5401	-0.2716	0.6838	-0.0230
	2.5401	-0.2716		
Mean	3.3542	-0.0523	-0.2796	0.0665

Average fo	od intake	of total 4	weeks (g/i	mouse)
	NG	DG	LF-DG	HF-DG
First cage	98.4	191.5	181.7	193.2
Second cage	98.4	190.2	188.9	181.0
Mean	98.4	190.9	185.3	187.1
STDEV	0.0424	0.9192	5.0912	8.6503

Average wei	ight gain c	of of total	4 weeks (g	g/mouse)
	NG	DG	LF-DG	HF-DG
First cage	4.1	0.4	-2.3	0.3
Second cage	2.5	-0.5	1.3	0.0
Mean	3.3	0.0	-0.5	0.1
STDEV	1.1314	0.6659	2.5102	0.2180
STDEV	1.1314	0.6659	2.5102	0.21

0 we	ek-Fast	ing bod	ly weigh	ıt (g)	1 w	eek-Fas	ting boo	ly weigh	t (g)
	NG	DG	LF-DG	HF-DG		NG	DG	LF-DG	HF-DG
	20.4	16.5	18.2	16.9		23.8	18.1	16.7	21.6
	22.8	15.7	18.0	17.2		25.6	19.7	16.4	17.8
	21.4	19.7	17.4	17.3		19.0	18.4	17.5	17.6
	22.8	16.3	17.2	17.6		22.3	17.8	17.4	15.7
	20.6	14.6	16.3	16.3		22.4	17.5	16.6	19.2
	21.2	18.6	16.6	15.7		24.1	18.3	17.7	18.0
	21.8	15.3	17.6	16.7		21.2	17.4	17.5	17.0
	22.3	15.5	14.8	16.9		21.2	17.5	18.3	17.5
	20.7	16.0	18.2	16.1		20.9	17.7	17.6	18.4
	20.7	19.5	16.7	19.7		21.4	17.9	17.4	15.8
		16.8	17.3	14.6			17.1	14.5	17.2
		17.8	15.2	15.7			17.2	17.4	16.3
Mean	21.5	16.9	17.0	16.7	Mean	22.2	17.9	17.1	17.7
2 wee	eks-Fas	ting bo	dy weigl	nt (g)	3 we	eks-Fas	ting bo	dy weigl	ıt (g)
	NG	DG	LF-DG	HF-DG		NG	DG	LF-DG	HF-DG
	25.1	17.5	15.8	21.5		25.8	17.1	15.5	22.0
	26.9	19.1	15.5	17.6		27.0	19.1	15.1	17.1
	21.0	17.7	14.9	18.1		22.8	17.1	14.8	18.9
	23.2	17.5	16.6	15.3		24.0	17.2	16.2	16.5
	24.4	17.3	16.6	18.8		26.1	17.3	15.4	14.9
	24.7	17.6	18.2	17.7		27.2	17.1	17.5	15.9
	21.0	17.7	18.1	16.4		21.7	16.6	16.2	16.0
	21.6	16.8	18.5	16.2		22.2	16.7	17.6	15.8
	22.0	17.1	17.8	18.4		23.4	16.3	17.6	17.8
	21.7	18.1	18.0	16.5		22.5	18.0	17.3	16.0
		14.2	16.9	16.2			13.5	15.7	14.3
		16.4	15.2	15.5			16.3	16.5	14.4
Mean	23.2	17.3	16.8	17.4	Mean	24.3	16.9	16.3	16.6
4	oleo Foo	ting be	der erreiel	a + (m)					
4 we	NG	DG	dy weigl	HF-DG					
	26.3	16.8	15.2	19.6					
	27.1 24.0	18.7	14.7 15.6	16.3					
		16.3	14.6	16.8					
	24.4 26.7	17.5 17.1	18.2	15.0 17.8					
	27.1	16.9	17.7	16.5					
	22.2	16.1	18.3	16.3					
	22.8	15.8	17.5	15.8					
	24.6	15.6	17.5	17.7					
	22.5	15.0		1/./					
	22.5								
		16.8	16.5	16.9					

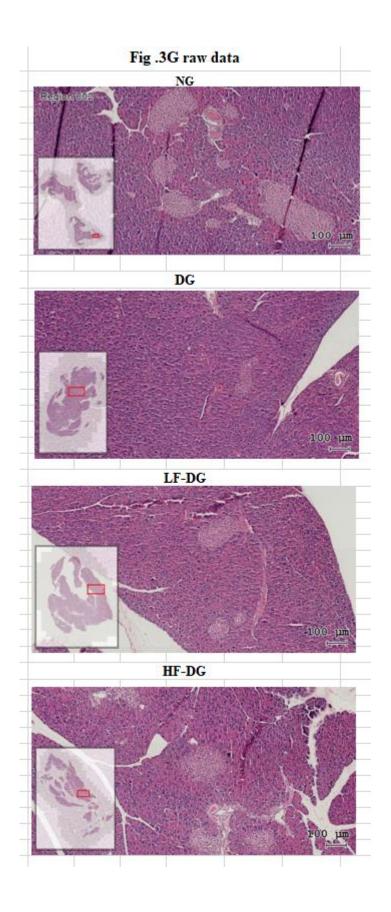
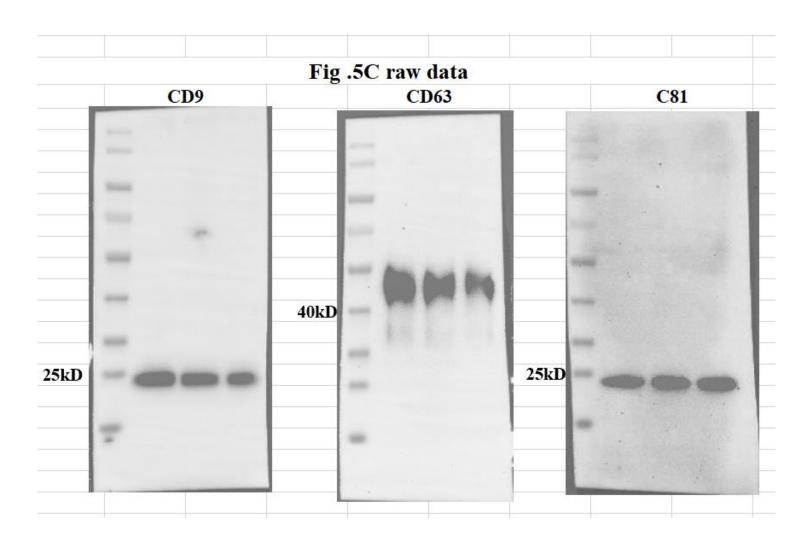


Fig .3H raw data

		Islet area(µm²)		
	NG	DG	LF-DG	HF-DG
	430996.77	115243.95	136424.32	165049.69
	178766.23	15427.59	121241.32	128010.26
	217394.77	66923.97	74097.59	482895.53
	237489.95	90181.32	62008.73	269734.24
	472506.88	71750.30	69996.89	169453.31
	P	Pancreas area(µm²		
	NG	DG	LF-DG	HF-DG
	21457781.25	19963817.79	24190580.60	15835743.07
	21849969.00	9091135.46	19449271.64	21521841.79
	27310298.33	15509508.13	25114813.97	31802186.26
	21934843.75	29600169.48	16079588.41	22420587.14
	29191336.14	12142852.06	13489877.05	27098779.30
		area/Pancreas are	a(%)	
	NG	DG	LF-DG	HF-DG
	2.01%	0.58%	0.56%	1.04%
	0.82%	0.17%	0.62%	0.59%
	0.80%	0.43%	0.30%	1.52%
	1.08%	0.30%	0.39%	1.20%
	1.62%	0.59%	0.52%	0.63%
Mean	1.26%	0.41%	0.48%	1.00%

						Fi	g.	.4A raw da	ita						
	Aor	ta contr	act value	e(mN)			Π			Re	laxation(%NE)			
	NG-1	NG-2	NG-3	NG-4	NG-5	NG-6	Н				<u> </u>				
ACh(0M)	9.758	7.886	11.352	6.153	6.665	8.789	Н		NG-1	NG-2	NG-3	NG-4	NG-5	NG-6	Mean
ACh(1*10 ⁻⁹ M)		7.413	10.927	5.842	6.019	8.254		ACh(1*10-9M)	1.93%	6.00%	3.74%	5.05%	9.69%	6.09%	5.42%
ACh(5*10 ⁻⁹ M)		7.138	10.022	5.309	5.816	8.002	Г	ACh(5*10-9M)		9.49%	11.72%	13.72%		8.95%	10.09%
ACh(1*10 ⁻⁸ M)		6.031	9.662	4.551	5.079	7.545		ACh(1*10-8M)		23.52%	14.89%	26.04%		14.15%	
ACh(5*10-8M)		5.501	9.109	4.018	4.225	7.079		ACh(5*10-8M)	21.85%	30.24%	19.76%	34.70%	36.61%	19.46%	27.10%
ACh(1*10 ⁻⁷ M)	6.047	4.025	6.849	3.588	3.105	5.132		ACh(1*10 ⁻⁷ M)	38.03%	48.96%	39.67%	41.69%	53.41%	41.61%	43.89%
ACh(5*10 ⁻⁷ M)	3.262	3.175	4.613	2.788	2.205	2.239		ACh(5*10 ⁻⁷ M)		59.74%	59.36%	54.69%	66.92%	74.52%	63.63%
ACh(1*10-6M)	2.061	1.423	3.322	1.337	1.908	1.911		ACh(1*10-6M)	78.88%	81.96%	70.74%	78.27%	71.37%	78.26%	76.58%
ACh(5*10-6M)	1.125	1.003	3.047	0.917	1.638	1.722	L	ACh(5*10-6M)	88.47%	87.28%	73.16%	85.10%	75.42%	80.41%	81.64%
ACh(1*10 ⁻⁵ M)	1.025	0.805	2.734	0.781	1.489	1.587	L	ACh(1*10 ⁻⁵ M)	89.50%	89.79%	75.92%	87.31%	77.66%	81.94%	83.69%
			-					<u></u>			111				
			-11								100				
			-11												
			-11	ш								1000			
			-11	Ш									_		
						_	-		_						
											1	111			
			\dashv		/										
				100	**		**	22							
			act value								Relaxati	on(%NE))		
	DG-1	DG-2	DG-3	DG-4	DG-5	DG-6			201					200	
ACh(0M)	DG-1 8.398	DG-2 6.391	DG-3 5.908	DG-4 9.131	4.126	7.642			DG-1	DG-2	DG-3	DG-4	DG-5	DG-6	Mean
ACh(1*10-9M)	DG-1 8.398 8.154	DG-2 6.391 6.187	DG-3 5.908 5.807	DG-4 9.131 9.007	4.126 4.082	7.642 7.500		ACh(1*10 ⁻⁹ M)	2.91%	DG-2 3.19%	DG-3	DG-4 1.36%	DG-5	1.86%	2.01%
ACh(1*10-9M) ACh(5*10-9M)	DG-1 8.398 8.154 7.937	DG-2 6.391 6.187 6.032	DG-3 5.908 5.807 5.724	DG-4 9.131 9.007 8.986	4.126 4.082 3.842	7.642 7.500 7.491		ACh(5*10-9M)	2.91% 5.49%	DG-2 3.19% 5.62%	DG-3 1.71% 3.11%	DG-4 1.36% 1.59%	DG-5 1.07% 6.88%	1.86%	2.01% 4.11%
ACh(1*10°M) ACh(5*10°M) ACh(1*10°M)	DG-1 8.398 8.154 7.937 7.005	DG-2 6.391 6.187 6.032 5.769	DG-3 5.908 5.807 5.724 5.657	DG-4 9.131 9.007 8.986 8.331	4.126 4.082 3.842 3.293	7.642 7.500 7.491 7.192		ACh(5*10 ⁻⁹ M) ACh(1*10 ⁻⁸ M)	2.91% 5.49% 16.59%	DG-2 3.19% 5.62% 9.73%	DG-3 1.71% 3.11% 4.25%	DG-4 1.36% 1.59% 8.76%	DG-5 1.07% 6.88% 20.19%	1.86% 1.98% 5.89%	2.01% 4.11% 10.90%
ACh(1*10°M) ACh(5*10°M) ACh(1*10°M) ACh(5*10°M)	DG-1 8.398 8.154 7.937 7.005 6.214	DG-2 6.391 6.187 6.032 5.769 4.527	DG-3 5.908 5.807 5.724 5.657 4.292	DG-4 9.131 9.007 8.986 8.331 7.332	4.126 4.082 3.842 3.293 2.700	7.642 7.500 7.491 7.192 6.351		ACh(5*10 ⁻⁹ M) ACh(1*10 ⁻⁸ M) ACh(5*10 ⁻⁸ M)	2.91% 5.49% 16.59% 26.01%	DG-2 3.19% 5.62% 9.73% 29.17%	DG-3 1.71% 3.11% 4.25% 27.35%	DG-4 1.36% 1.59% 8.76% 19.70%	DG-5 1.07% 6.88% 20.19% 34.56%	1.86% 1.98% 5.89% 16.89%	2.01% 4.11% 10.90% 25.61%
ACh(1*10 ⁻⁹ M) ACh(5*10 ⁻⁹ M) ACh(1*10 ⁻⁸ M) ACh(5*10 ⁻⁸ M) ACh(1*10 ⁻⁷ M)	DG-1 8.398 8.154 7.937 7.005 6.214 5.101	DG-2 6.391 6.187 6.032 5.769 4.527 3.296	DG-3 5.908 5.807 5.724 5.657 4.292 3.663	DG-4 9.131 9.007 8.986 8.331 7.332 5.101	4.126 4.082 3.842 3.293 2.700 2.332	7.642 7.500 7.491 7.192 6.351 5.661		ACh(5*10 ⁻⁹ M) ACh(1*10 ⁻⁸ M) ACh(5*10 ⁻⁸ M) ACh(1*10 ⁻⁷ M)	2.91% 5.49% 16.59% 26.01% 39.26%	DG-2 3.19% 5.62% 9.73% 29.17% 48.43%	DG-3 1.71% 3.11% 4.25% 27.35% 38.00%	DG-4 1.36% 1.59% 8.76% 19.70% 44.14%	DG-5 1.07% 6.88% 20.19% 34.56% 43.48%	1.86% 1.98% 5.89% 16.89% 25.92%	2.01% 4.11% 10.90% 25.61% 39.87%
ACh(1*10 ⁻⁹ M) ACh(5*10 ⁻⁹ M) ACh(1*10 ⁻⁸ M) ACh(5*10 ⁻⁸ M) ACh(1*10 ⁻⁷ M) ACh(5*10 ⁻⁷ M)	DG-1 8.398 8.154 7.937 7.005 6.214 5.101 4.322	DG-2 6.391 6.187 6.032 5.769 4.527 3.296 2.716	5.908 5.807 5.724 5.657 4.292 3.663 3.102	DG-4 9.131 9.007 8.986 8.331 7.332 5.101 4.235	4.126 4.082 3.842 3.293 2.700 2.332 2.002	7.642 7.500 7.491 7.192 6.351 5.661 5.117		ACh(5*10 ⁻⁹ M) ACh(1*10 ⁻⁸ M) ACh(5*10 ⁻⁸ M) ACh(1*10 ⁻⁷ M) ACh(5*10 ⁻⁷ M)	2.91% 5.49% 16.59% 26.01% 39.26% 48.54%	DG-2 3.19% 5.62% 9.73% 29.17% 48.43% 57.50%	DG-3 1.71% 3.11% 4.25% 27.35% 38.00% 47.49%	DG-4 1.36% 1.59% 8.76% 19.70% 44.14% 53.62%	DG-5 1.07% 6.88% 20.19% 34.56% 43.48% 51.48%	1.86% 1.98% 5.89% 16.89% 25.92% 33.04%	2.01% 4.11% 10.90% 25.61% 39.87% 48.61%
ACh(1*10 ⁻⁹ M) ACh(5*10 ⁻⁹ M) ACh(1*10 ⁻⁸ M) ACh(5*10 ⁻⁸ M) ACh(1*10 ⁻⁷ M) ACh(5*10 ⁻⁷ M) ACh(1*10 ⁻⁶ M)	DG-1 8.398 8.154 7.937 7.005 6.214 5.101 4.322 3.253	DG-2 6.391 6.187 6.032 5.769 4.527 3.296 2.716 2.473	5.908 5.807 5.724 5.657 4.292 3.663 3.102 2.917	DG-4 9.131 9.007 8.986 8.331 7.332 5.101 4.235 4.019	4.126 4.082 3.842 3.293 2.700 2.332 2.002 1.653	7.642 7.500 7.491 7.192 6.351 5.661 5.117 4.003		ACh(5*10*M) ACh(1*10*M) ACh(5*10*M) ACh(1*10*7M) ACh(1*10*7M) ACh(5*10*7M) ACh(1*10*7M)	2.91% 5.49% 16.59% 26.01% 39.26% 48.54% 61.26%	DG-2 3.19% 5.62% 9.73% 29.17% 48.43% 57.50% 61.30%	DG-3 1.71% 3.11% 4.25% 27.35% 38.00% 47.49% 50.63%	DG-4 1.36% 1.59% 8.76% 19.70% 44.14% 53.62% 55.99%	DG-5 1.07% 6.88% 20.19% 34.56% 43.48% 51.48%	1.86% 1.98% 5.89% 16.89% 25.92% 33.04% 47.62%	2.01% 4.11% 10.90% 25.61% 39.87% 48.61% 56.12%
ACh(1*10 ⁻⁹ M) ACh(5*10 ⁻⁹ M) ACh(1*10 ⁻⁸ M) ACh(5*10 ⁻⁸ M) ACh(1*10 ⁻⁷ M) ACh(5*10 ⁻⁷ M) ACh(1*10 ⁻⁶ M) ACh(5*10 ⁻⁶ M)	DG-1 8.398 8.154 7.937 7.005 6.214 5.101 4.322 3.253 2.944	DG-2 6.391 6.187 6.032 5.769 4.527 3.296 2.716 2.473 2.526	DG-3 5.908 5.807 5.724 5.657 4.292 3.663 3.102 2.917 2.400	DG-4 9.131 9.007 8.986 8.331 7.332 5.101 4.235 4.019 3.885	4.126 4.082 3.842 3.293 2.700 2.332 2.002 1.653 1.323	7.642 7.500 7.491 7.192 6.351 5.661 5.117 4.003 3.601		ACh(5*10*9M) ACh(1*10*9M) ACh(5*10*9M) ACh(5*10*9M) ACh(1*10*7M) ACh(5*10*7M) ACh(1*10*6M) ACh(5*10*6M)	2.91% 5.49% 16.59% 26.01% 39.26% 48.54% 61.26% 64.94%	DG-2 3.19% 5.62% 9.73% 29.17% 48.43% 57.50% 61.30% 60.48%	DG-3 1.71% 3.11% 4.25% 27.35% 38.00% 47.49% 50.63% 59.38%	DG-4 1.36% 1.59% 8.76% 19.70% 44.14% 53.62% 55.99% 57.45%	DG-5 1.07% 6.88% 20.19% 34.56% 43.48% 51.48% 59.94% 67.94%	1.86% 1.98% 5.89% 16.89% 25.92% 33.04% 47.62% 52.88%	2.01% 4.11% 10.90% 25.61% 39.87% 48.61% 56.12% 60.51%
ACh(1*10 ⁻⁹ M) ACh(5*10 ⁻⁹ M) ACh(1*10 ⁻⁸ M) ACh(5*10 ⁻⁸ M) ACh(1*10 ⁻⁷ M) ACh(5*10 ⁻⁷ M) ACh(1*10 ⁻⁶ M)	DG-1 8.398 8.154 7.937 7.005 6.214 5.101 4.322 3.253 2.944	DG-2 6.391 6.187 6.032 5.769 4.527 3.296 2.716 2.473	5.908 5.807 5.724 5.657 4.292 3.663 3.102 2.917	DG-4 9.131 9.007 8.986 8.331 7.332 5.101 4.235 4.019	4.126 4.082 3.842 3.293 2.700 2.332 2.002 1.653	7.642 7.500 7.491 7.192 6.351 5.661 5.117 4.003		ACh(5*10*M) ACh(1*10*M) ACh(5*10*M) ACh(1*10*7M) ACh(1*10*7M) ACh(5*10*7M) ACh(1*10*7M)	2.91% 5.49% 16.59% 26.01% 39.26% 48.54% 61.26% 64.94%	DG-2 3.19% 5.62% 9.73% 29.17% 48.43% 57.50% 61.30% 60.48%	DG-3 1.71% 3.11% 4.25% 27.35% 38.00% 47.49% 50.63% 59.38% 61.56%	DG-4 1.36% 1.59% 8.76% 19.70% 44.14% 53.62% 55.99% 57.45%	DG-5 1.07% 6.88% 20.19% 34.56% 43.48% 51.48% 59.94% 67.94%	1.86% 1.98% 5.89% 16.89% 25.92% 33.04% 47.62% 52.88%	2.01% 4.11% 10.90% 25.61% 39.87% 48.61% 56.12% 60.51%
ACh(1*10 ⁻⁹ M) ACh(5*10 ⁻⁹ M) ACh(1*10 ⁻⁸ M) ACh(5*10 ⁻⁸ M) ACh(1*10 ⁻⁷ M) ACh(5*10 ⁻⁷ M) ACh(1*10 ⁻⁶ M) ACh(5*10 ⁻⁶ M)	DG-1 8.398 8.154 7.937 7.005 6.214 5.101 4.322 3.253 2.944	DG-2 6.391 6.187 6.032 5.769 4.527 3.296 2.716 2.473 2.526	DG-3 5.908 5.807 5.724 5.657 4.292 3.663 3.102 2.917 2.400	DG-4 9.131 9.007 8.986 8.331 7.332 5.101 4.235 4.019 3.885	4.126 4.082 3.842 3.293 2.700 2.332 2.002 1.653 1.323	7.642 7.500 7.491 7.192 6.351 5.661 5.117 4.003 3.601		ACh(5*10*9M) ACh(1*10*9M) ACh(5*10*9M) ACh(5*10*9M) ACh(1*10*7M) ACh(5*10*7M) ACh(1*10*6M) ACh(5*10*6M)	2.91% 5.49% 16.59% 26.01% 39.26% 48.54% 61.26% 64.94%	DG-2 3.19% 5.62% 9.73% 29.17% 48.43% 57.50% 61.30% 60.48%	DG-3 1.71% 3.11% 4.25% 27.35% 38.00% 47.49% 50.63% 59.38%	DG-4 1.36% 1.59% 8.76% 19.70% 44.14% 53.62% 55.99% 57.45%	DG-5 1.07% 6.88% 20.19% 34.56% 43.48% 51.48% 59.94% 67.94%	1.86% 1.98% 5.89% 16.89% 25.92% 33.04% 47.62% 52.88%	2.01% 4.11% 10.90% 25.61% 39.87% 48.61% 56.12% 60.51%
ACh(1*10 ⁻⁹ M) ACh(5*10 ⁻⁹ M) ACh(1*10 ⁻⁸ M) ACh(5*10 ⁻⁸ M) ACh(1*10 ⁻⁷ M) ACh(5*10 ⁻⁷ M) ACh(1*10 ⁻⁶ M) ACh(5*10 ⁻⁶ M)	DG-1 8.398 8.154 7.937 7.005 6.214 5.101 4.322 3.253 2.944	DG-2 6.391 6.187 6.032 5.769 4.527 3.296 2.716 2.473 2.526	DG-3 5.908 5.807 5.724 5.657 4.292 3.663 3.102 2.917 2.400	DG-4 9.131 9.007 8.986 8.331 7.332 5.101 4.235 4.019 3.885	4.126 4.082 3.842 3.293 2.700 2.332 2.002 1.653 1.323	7.642 7.500 7.491 7.192 6.351 5.661 5.117 4.003 3.601		ACh(5*10*9M) ACh(1*10*9M) ACh(5*10*9M) ACh(5*10*9M) ACh(1*10*7M) ACh(5*10*7M) ACh(1*10*6M) ACh(5*10*6M)	2.91% 5.49% 16.59% 26.01% 39.26% 48.54% 61.26% 64.94%	DG-2 3.19% 5.62% 9.73% 29.17% 48.43% 57.50% 61.30% 60.48%	DG-3 1.71% 3.11% 4.25% 27.35% 38.00% 47.49% 50.63% 59.38% 61.56%	DG-4 1.36% 1.59% 8.76% 19.70% 44.14% 53.62% 55.99% 57.45%	DG-5 1.07% 6.88% 20.19% 34.56% 43.48% 51.48% 59.94% 67.94%	1.86% 1.98% 5.89% 16.89% 25.92% 33.04% 47.62% 52.88%	2.01% 4.11% 10.90% 25.61% 39.87% 48.61% 56.12% 60.51%
ACh(1*10 ⁻⁹ M) ACh(5*10 ⁻⁹ M) ACh(1*10 ⁻⁸ M) ACh(5*10 ⁻⁸ M) ACh(1*10 ⁻⁷ M) ACh(5*10 ⁻⁷ M) ACh(1*10 ⁻⁶ M) ACh(5*10 ⁻⁶ M)	DG-1 8.398 8.154 7.937 7.005 6.214 5.101 4.322 3.253 2.944	DG-2 6.391 6.187 6.032 5.769 4.527 3.296 2.716 2.473 2.526	DG-3 5.908 5.807 5.724 5.657 4.292 3.663 3.102 2.917 2.400	DG-4 9.131 9.007 8.986 8.331 7.332 5.101 4.235 4.019 3.885	4.126 4.082 3.842 3.293 2.700 2.332 2.002 1.653 1.323	7.642 7.500 7.491 7.192 6.351 5.661 5.117 4.003 3.601		ACh(5*10*9M) ACh(1*10*9M) ACh(5*10*9M) ACh(5*10*9M) ACh(1*10*7M) ACh(5*10*7M) ACh(1*10*6M) ACh(5*10*6M)	2.91% 5.49% 16.59% 26.01% 39.26% 48.54% 61.26% 64.94%	DG-2 3.19% 5.62% 9.73% 29.17% 48.43% 57.50% 61.30% 60.48%	DG-3 1.71% 3.11% 4.25% 27.35% 38.00% 47.49% 50.63% 59.38% 61.56%	DG-4 1.36% 1.59% 8.76% 19.70% 44.14% 53.62% 55.99% 57.45%	DG-5 1.07% 6.88% 20.19% 34.56% 43.48% 51.48% 59.94% 67.94%	1.86% 1.98% 5.89% 16.89% 25.92% 33.04% 47.62% 52.88%	2.01% 4.11% 10.90% 25.61% 39.87% 48.61% 56.12% 60.51%
ACh(1*10 ⁻⁹ M) ACh(5*10 ⁻⁹ M) ACh(1*10 ⁻⁸ M) ACh(5*10 ⁻⁸ M) ACh(1*10 ⁻⁷ M) ACh(5*10 ⁻⁷ M) ACh(1*10 ⁻⁶ M) ACh(5*10 ⁻⁶ M)	DG-1 8.398 8.154 7.937 7.005 6.214 5.101 4.322 3.253 2.944	DG-2 6.391 6.187 6.032 5.769 4.527 3.296 2.716 2.473 2.526	DG-3 5.908 5.807 5.724 5.657 4.292 3.663 3.102 2.917 2.400	DG-4 9.131 9.007 8.986 8.331 7.332 5.101 4.235 4.019 3.885	4.126 4.082 3.842 3.293 2.700 2.332 2.002 1.653 1.323	7.642 7.500 7.491 7.192 6.351 5.661 5.117 4.003 3.601		ACh(5*10*9M) ACh(1*10*9M) ACh(5*10*9M) ACh(5*10*9M) ACh(1*10*7M) ACh(5*10*7M) ACh(1*10*6M) ACh(5*10*6M)	2.91% 5.49% 16.59% 26.01% 39.26% 48.54% 61.26% 64.94%	DG-2 3.19% 5.62% 9.73% 29.17% 48.43% 57.50% 61.30% 60.48%	DG-3 1.71% 3.11% 4.25% 27.35% 38.00% 47.49% 50.63% 59.38% 61.56%	DG-4 1.36% 1.59% 8.76% 19.70% 44.14% 53.62% 55.99% 57.45%	DG-5 1.07% 6.88% 20.19% 34.56% 43.48% 51.48% 59.94% 67.94%	1.86% 1.98% 5.89% 16.89% 25.92% 33.04% 47.62% 52.88%	2.01% 4.11% 10.90% 25.61% 39.87% 48.61% 56.12% 60.51%
ACh(1*10 ⁻⁹ M) ACh(5*10 ⁻⁹ M) ACh(1*10 ⁻⁸ M) ACh(5*10 ⁻⁸ M) ACh(1*10 ⁻⁷ M) ACh(5*10 ⁻⁷ M) ACh(1*10 ⁻⁶ M) ACh(5*10 ⁻⁶ M)	DG-1 8.398 8.154 7.937 7.005 6.214 5.101 4.322 3.253 2.944	DG-2 6.391 6.187 6.032 5.769 4.527 3.296 2.716 2.473 2.526	DG-3 5.908 5.807 5.724 5.657 4.292 3.663 3.102 2.917 2.400	DG-4 9.131 9.007 8.986 8.331 7.332 5.101 4.235 4.019 3.885	4.126 4.082 3.842 3.293 2.700 2.332 2.002 1.653 1.323	7.642 7.500 7.491 7.192 6.351 5.661 5.117 4.003 3.601		ACh(5*10*9M) ACh(1*10*9M) ACh(5*10*9M) ACh(5*10*9M) ACh(1*10*7M) ACh(5*10*7M) ACh(1*10*6M) ACh(5*10*6M)	2.91% 5.49% 16.59% 26.01% 39.26% 48.54% 61.26% 64.94%	DG-2 3.19% 5.62% 9.73% 29.17% 48.43% 57.50% 61.30% 60.48%	DG-3 1.71% 3.11% 4.25% 27.35% 38.00% 47.49% 50.63% 59.38% 61.56%	DG-4 1.36% 1.59% 8.76% 19.70% 44.14% 53.62% 55.99% 57.45%	DG-5 1.07% 6.88% 20.19% 34.56% 43.48% 51.48% 59.94% 67.94%	1.86% 1.98% 5.89% 16.89% 25.92% 33.04% 47.62% 52.88%	2.01% 4.11% 10.90% 25.61% 39.87% 48.61% 56.12% 60.51%
ACh(1*10 ⁻⁹ M) ACh(5*10 ⁻⁹ M) ACh(1*10 ⁻⁸ M) ACh(5*10 ⁻⁸ M) ACh(1*10 ⁻⁷ M) ACh(5*10 ⁻⁷ M) ACh(1*10 ⁻⁶ M) ACh(5*10 ⁻⁶ M)	DG-1 8.398 8.154 7.937 7.005 6.214 5.101 4.322 3.253 2.944	DG-2 6.391 6.187 6.032 5.769 4.527 3.296 2.716 2.473 2.526	DG-3 5.908 5.807 5.724 5.657 4.292 3.663 3.102 2.917 2.400	DG-4 9.131 9.007 8.986 8.331 7.332 5.101 4.235 4.019 3.885	4.126 4.082 3.842 3.293 2.700 2.332 2.002 1.653 1.323	7.642 7.500 7.491 7.192 6.351 5.661 5.117 4.003 3.601		ACh(5*10*9M) ACh(1*10*9M) ACh(5*10*9M) ACh(5*10*9M) ACh(1*10*7M) ACh(5*10*7M) ACh(1*10*6M) ACh(5*10*6M)	2.91% 5.49% 16.59% 26.01% 39.26% 48.54% 61.26% 64.94%	DG-2 3.19% 5.62% 9.73% 29.17% 48.43% 57.50% 61.30% 60.48%	DG-3 1.71% 3.11% 4.25% 27.35% 38.00% 47.49% 50.63% 59.38% 61.56%	DG-4 1.36% 1.59% 8.76% 19.70% 44.14% 53.62% 55.99% 57.45%	DG-5 1.07% 6.88% 20.19% 34.56% 43.48% 51.48% 59.94% 67.94%	1.86% 1.98% 5.89% 16.89% 25.92% 33.04% 47.62% 52.88%	2.01% 4.11% 10.90% 25.61% 39.87% 48.61% 56.12% 60.51%
ACh(1*10 ⁻⁹ M) ACh(5*10 ⁻⁹ M) ACh(1*10 ⁻⁸ M) ACh(5*10 ⁻⁸ M) ACh(1*10 ⁻⁷ M) ACh(5*10 ⁻⁷ M) ACh(1*10 ⁻⁶ M) ACh(5*10 ⁻⁶ M)	DG-1 8.398 8.154 7.937 7.005 6.214 5.101 4.322 3.253 2.944	DG-2 6.391 6.187 6.032 5.769 4.527 3.296 2.716 2.473 2.526	DG-3 5.908 5.807 5.724 5.657 4.292 3.663 3.102 2.917 2.400	DG-4 9.131 9.007 8.986 8.331 7.332 5.101 4.235 4.019 3.885	4.126 4.082 3.842 3.293 2.700 2.332 2.002 1.653 1.323	7.642 7.500 7.491 7.192 6.351 5.661 5.117 4.003 3.601		ACh(5*10*9M) ACh(1*10*9M) ACh(5*10*9M) ACh(5*10*9M) ACh(1*10*7M) ACh(5*10*7M) ACh(1*10*6M) ACh(5*10*6M)	2.91% 5.49% 16.59% 26.01% 39.26% 48.54% 61.26% 64.94%	DG-2 3.19% 5.62% 9.73% 29.17% 48.43% 57.50% 61.30% 60.48%	DG-3 1.71% 3.11% 4.25% 27.35% 38.00% 47.49% 50.63% 59.38% 61.56%	DG-4 1.36% 1.59% 8.76% 19.70% 44.14% 53.62% 55.99% 57.45%	DG-5 1.07% 6.88% 20.19% 34.56% 43.48% 51.48% 59.94% 67.94%	1.86% 1.98% 5.89% 16.89% 25.92% 33.04% 47.62% 52.88%	2.01% 4.11% 10.90% 25.61% 39.87% 48.61% 56.12% 60.51%
ACh(1*10 ⁻⁹ M) ACh(5*10 ⁻⁹ M) ACh(1*10 ⁻⁸ M) ACh(5*10 ⁻⁸ M) ACh(1*10 ⁻⁷ M) ACh(5*10 ⁻⁷ M) ACh(1*10 ⁻⁶ M) ACh(5*10 ⁻⁶ M)	DG-1 8.398 8.154 7.937 7.005 6.214 5.101 4.322 3.253 2.944	DG-2 6.391 6.187 6.032 5.769 4.527 3.296 2.716 2.473 2.526	DG-3 5.908 5.807 5.724 5.657 4.292 3.663 3.102 2.917 2.400	DG-4 9.131 9.007 8.986 8.331 7.332 5.101 4.235 4.019 3.885	4.126 4.082 3.842 3.293 2.700 2.332 2.002 1.653 1.323	7.642 7.500 7.491 7.192 6.351 5.661 5.117 4.003 3.601		ACh(5*10*9M) ACh(1*10*9M) ACh(5*10*9M) ACh(5*10*9M) ACh(1*10*7M) ACh(5*10*7M) ACh(1*10*6M) ACh(5*10*6M)	2.91% 5.49% 16.59% 26.01% 39.26% 48.54% 61.26% 64.94%	DG-2 3.19% 5.62% 9.73% 29.17% 48.43% 57.50% 61.30% 60.48%	DG-3 1.71% 3.11% 4.25% 27.35% 38.00% 47.49% 50.63% 59.38% 61.56%	DG-4 1.36% 1.59% 8.76% 19.70% 44.14% 53.62% 55.99% 57.45%	DG-5 1.07% 6.88% 20.19% 34.56% 43.48% 51.48% 59.94% 67.94%	1.86% 1.98% 5.89% 16.89% 25.92% 33.04% 47.62% 52.88%	2.01% 4.11% 10.90% 25.61% 39.87% 48.61% 56.12% 60.51%
ACh(1*10 ⁻⁹ M) ACh(5*10 ⁻⁹ M) ACh(1*10 ⁻⁸ M) ACh(5*10 ⁻⁸ M) ACh(1*10 ⁻⁷ M) ACh(5*10 ⁻⁷ M) ACh(1*10 ⁻⁶ M) ACh(5*10 ⁻⁶ M)	DG-1 8.398 8.154 7.937 7.005 6.214 5.101 4.322 3.253 2.944	DG-2 6.391 6.187 6.032 5.769 4.527 3.296 2.716 2.473 2.526	DG-3 5.908 5.807 5.724 5.657 4.292 3.663 3.102 2.917 2.400	DG-4 9.131 9.007 8.986 8.331 7.332 5.101 4.235 4.019 3.885	4.126 4.082 3.842 3.293 2.700 2.332 2.002 1.653 1.323	7.642 7.500 7.491 7.192 6.351 5.661 5.117 4.003 3.601		ACh(5*10*9M) ACh(1*10*9M) ACh(5*10*9M) ACh(5*10*9M) ACh(1*10*7M) ACh(5*10*7M) ACh(1*10*6M) ACh(5*10*6M)	2.91% 5.49% 16.59% 26.01% 39.26% 48.54% 61.26% 64.94%	DG-2 3.19% 5.62% 9.73% 29.17% 48.43% 57.50% 61.30% 60.48%	DG-3 1.71% 3.11% 4.25% 27.35% 38.00% 47.49% 50.63% 59.38% 61.56%	DG-4 1.36% 1.59% 8.76% 19.70% 44.14% 53.62% 55.99% 57.45% 59.36%	DG-5 1.07% 6.88% 20.19% 34.56% 43.48% 51.48% 67.94% 69.22%	1.86% 1.98% 5.89% 16.89% 25.92% 33.04% 47.62% 52.88%	2.01% 4.11% 10.90% 25.61% 39.87% 48.61% 56.12% 60.51%
ACh(1*10 ⁻⁹ M) ACh(5*10 ⁻⁹ M) ACh(1*10 ⁻⁸ M) ACh(5*10 ⁻⁸ M) ACh(1*10 ⁻⁷ M) ACh(5*10 ⁻⁷ M) ACh(1*10 ⁻⁶ M) ACh(5*10 ⁻⁶ M)	DG-1 8.398 8.154 7.937 7.005 6.214 5.101 4.322 3.253 2.944	DG-2 6.391 6.187 6.032 5.769 4.527 3.296 2.716 2.473 2.526	DG-3 5.908 5.807 5.724 5.657 4.292 3.663 3.102 2.917 2.400	DG-4 9.131 9.007 8.986 8.331 7.332 5.101 4.235 4.019 3.885	4.126 4.082 3.842 3.293 2.700 2.332 2.002 1.653 1.323	7.642 7.500 7.491 7.192 6.351 5.661 5.117 4.003 3.601		ACh(5*10*9M) ACh(1*10*9M) ACh(5*10*9M) ACh(5*10*9M) ACh(1*10*7M) ACh(5*10*7M) ACh(1*10*6M) ACh(5*10*6M)	2.91% 5.49% 16.59% 26.01% 39.26% 48.54% 61.26% 64.94%	DG-2 3.19% 5.62% 9.73% 29.17% 48.43% 57.50% 61.30% 60.48%	DG-3 1.71% 3.11% 4.25% 27.35% 38.00% 47.49% 50.63% 59.38% 61.56%	DG-4 1.36% 1.59% 8.76% 19.70% 44.14% 53.62% 55.99% 57.45% 59.36%	DG-5 1.07% 6.88% 20.19% 34.56% 43.48% 51.48% 59.94% 67.94%	1.86% 1.98% 5.89% 16.89% 25.92% 33.04% 47.62% 52.88%	2.01% 4.11% 10.90% 25.61% 39.87% 48.61% 56.12% 60.51%
ACh(1*10*9M) ACh(5*10*9M) ACh(1*10*5M) ACh(5*10*5M) ACh(1*10*7M) ACh(1*10*7M) ACh(1*10*5M) ACh(1*10*5M) ACh(1*10*5M)	DG-1 8.398 8.154 7.937 7.005 6.214 5.101 4.322 3.253 2.944	DG-2 6.391 6.187 6.032 5.769 4.527 3.296 2.716 2.473 2.526	DG-3 5.908 5.807 5.724 5.657 4.292 3.663 3.102 2.917 2.400	DG-4 9.131 9.007 8.986 8.331 7.332 5.101 4.235 4.019 3.885	4.126 4.082 3.842 3.293 2.700 2.332 2.002 1.653 1.323	7.642 7.500 7.491 7.192 6.351 5.661 5.117 4.003 3.601		ACh(5*10*9M) ACh(1*10*9M) ACh(5*10*9M) ACh(5*10*9M) ACh(1*10*7M) ACh(5*10*7M) ACh(1*10*6M) ACh(5*10*6M)	2.91% 5.49% 16.59% 26.01% 39.26% 48.54% 61.26% 64.94%	DG-2 3.19% 5.62% 9.73% 29.17% 48.43% 57.50% 61.30% 60.48%	DG-3 1.71% 3.11% 4.25% 27.35% 38.00% 47.49% 50.63% 59.38% 61.56%	DG-4 1.36% 1.59% 8.76% 19.70% 44.14% 53.62% 55.99% 57.45% 59.36%	DG-5 1.07% 6.88% 20.19% 34.56% 43.48% 51.48% 67.94% 69.22%	1.86% 1.98% 5.89% 16.89% 25.92% 33.04% 47.62% 52.88%	2.01% 4.11% 10.90% 25.61% 39.87% 48.61% 56.12% 60.51%
ACh(1*10*9M) ACh(5*10*9M) ACh(1*10*9M) ACh(5*10*9M) ACh(5*10*7M) ACh(1*10*7M) ACh(5*10*7M) ACh(1*10*5M) ACh(1*10*5M) ACh(5*10*5M)	DG-1 8.398 8.154 7.937 7.005 6.214 5.101 4.322 3.253 2.944	DG-2 6.391 6.187 6.032 5.769 4.527 3.296 2.716 2.473 2.526	DG-3 5.908 5.807 5.724 5.657 4.292 3.663 3.102 2.917 2.400	DG-4 9.131 9.007 8.986 8.331 7.332 5.101 4.235 4.019 3.885	4.126 4.082 3.842 3.293 2.700 2.332 2.002 1.653 1.323	7.642 7.500 7.491 7.192 6.351 5.661 5.117 4.003 3.601		ACh(5*10*9M) ACh(1*10*9M) ACh(5*10*9M) ACh(5*10*9M) ACh(1*10*7M) ACh(5*10*7M) ACh(1*10*6M) ACh(5*10*6M)	2.91% 5.49% 16.59% 26.01% 39.26% 48.54% 61.26% 64.94%	DG-2 3.19% 5.62% 9.73% 29.17% 48.43% 57.50% 61.30% 60.48%	DG-3 1.71% 3.11% 4.25% 27.35% 38.00% 47.49% 50.63% 59.38% 61.56%	DG-4 1.36% 1.59% 8.76% 19.70% 44.14% 53.62% 55.99% 57.45% 59.36%	DG-5 1.07% 6.88% 20.19% 34.56% 43.48% 51.48% 67.94% 69.22%	1.86% 1.98% 5.89% 16.89% 25.92% 33.04% 47.62% 52.88%	2.01% 4.11% 10.90% 25.61% 39.87% 48.61% 56.12% 60.51%

LF- DG-2 10.327 9.539 9.171 8.896 7.482 5.838 3.069 2.723 2.156 2.094	LF-DG-3 8.747 8.461 8.066 7.206 7.085 4.828 2.514 2.121 1.834 1.809	e(mN) LF- DG-4 9.792 9.260 8.158 7.918 6.383 5.723 4.374 3.668 3.335 3.373	LF- DG-5 8.689 8.382 7.749 7.322 5.834 4.526 3.434 2.478 2.119 2.090	LF- DG-6 6.152 6.008 5.611 5.075 4.551 4.102 3.114 2.905 2.603 2.607	ACh(1*10°9M) ACh(5*10°9M) ACh(1*10°5M) ACh(5*10°5M) ACh(1*10°7M) ACh(1*10°7M) ACh(5*10°7M) ACh(1*10°5M) ACh(1*10°5M) ACh(1*10°5M)	5.81% 7.10% 10.87% 31.23% 50.00% 75.78% 82.79%	LF-DG- 2 7.63% 11.19% 13.86% 27.55% 43.47% 70.28% 73.63% 79.12% 79.72%	LF-DG- 3 3.27% 7.79% 17.62% 19.00% 44.80% 71.26% 75.75% 79.03% 79.32%		LF-DG- 5 3.53% 10.82% 15.73% 32.86% 47.91% 60.48% 71.48% 75.61% 75.95%	LF-DG-6 2.34% 8.79% 17.51% 26.02% 33.32% 49.38% 52.78% 57.69% 57.62%	Mean 3.86% 10.18% 15.16% 25.19% 40.38% 59.46% 68.66% 73.36% 73.62%
DG-2 10.327 9.539 9.171 8.896 7.482 5.838 3.069 2.723 2.156	8.747 8.461 8.066 7.206 7.085 4.828 2.514 2.121 1.834	9.792 9.260 8.158 7.918 6.383 5.723 4.374 3.668 3.335	8.689 8.382 7.749 7.322 5.834 4.526 3.434 2.478 2.119	DG-6 6.152 6.008 5.611 5.075 4.551 4.102 3.114 2.905 2.603	ACh(5*10*9M) ACh(1*10*5M) ACh(5*10*5M) ACh(5*10*7M) ACh(5*10*7M) ACh(5*10*7M) ACh(1*10*5M) ACh(5*10*5M)	1 0.94% 5.81% 7.10% 10.87% 31.23% 50.00% 75.78% 82.79%	2 7.63% 11.19% 13.86% 27.55% 43.47% 70.28% 73.63% 79.12%	3 3.27% 7.79% 17.62% 19.00% 44.80% 71.26% 75.75% 79.03%	4 5.43% 16.69% 19.14% 34.81% 41.55% 55.33% 62.54% 65.94%	5 3.53% 10.82% 15.73% 32.86% 47.91% 60.48% 71.48% 75.61%	6 2.34% 8.79% 17.51% 26.02% 33.32% 49.38% 52.78% 57.69%	3.86% 10.18% 15.16% 25.19% 40.38% 59.46% 68.66% 73.36%
10.327 9.539 9.171 8.896 7.482 5.838 3.069 2.723 2.156	8.747 8.461 8.066 7.206 7.085 4.828 2.514 2.121 1.834	9.792 9.260 8.158 7.918 6.383 5.723 4.374 3.668 3.335	8.689 8.382 7.749 7.322 5.834 4.526 3.434 2.478 2.119	6.152 6.008 5.611 5.075 4.551 4.102 3.114 2.905 2.603	ACh(5*10*9M) ACh(1*10*5M) ACh(5*10*5M) ACh(5*10*7M) ACh(5*10*7M) ACh(5*10*7M) ACh(1*10*5M) ACh(5*10*5M)	1 0.94% 5.81% 7.10% 10.87% 31.23% 50.00% 75.78% 82.79%	2 7.63% 11.19% 13.86% 27.55% 43.47% 70.28% 73.63% 79.12%	3 3.27% 7.79% 17.62% 19.00% 44.80% 71.26% 75.75% 79.03%	4 5.43% 16.69% 19.14% 34.81% 41.55% 55.33% 62.54% 65.94%	5 3.53% 10.82% 15.73% 32.86% 47.91% 60.48% 71.48% 75.61%	6 2.34% 8.79% 17.51% 26.02% 33.32% 49.38% 52.78% 57.69%	3.86% 10.18% 15.16% 25.19% 40.38% 59.46% 68.66% 73.36%
9.539 9.171 8.896 7.482 5.838 3.069 2.723 2.156	8.461 8.066 7.206 7.085 4.828 2.514 2.121 1.834	9.260 8.158 7.918 6.383 5.723 4.374 3.668 3.335	8.382 7.749 7.322 5.834 4.526 3.434 2.478 2.119	6.008 5.611 5.075 4.551 4.102 3.114 2.905 2.603	ACh(5*10*9M) ACh(1*10*5M) ACh(5*10*5M) ACh(5*10*7M) ACh(5*10*7M) ACh(5*10*7M) ACh(1*10*5M) ACh(5*10*5M)	1 0.94% 5.81% 7.10% 10.87% 31.23% 50.00% 75.78% 82.79%	2 7.63% 11.19% 13.86% 27.55% 43.47% 70.28% 73.63% 79.12%	3 3.27% 7.79% 17.62% 19.00% 44.80% 71.26% 75.75% 79.03%	4 5.43% 16.69% 19.14% 34.81% 41.55% 55.33% 62.54% 65.94%	5 3.53% 10.82% 15.73% 32.86% 47.91% 60.48% 71.48% 75.61%	6 2.34% 8.79% 17.51% 26.02% 33.32% 49.38% 52.78% 57.69%	3.86% 10.18% 15.16% 25.19% 40.38% 59.46% 68.66% 73.36%
9.539 9.171 8.896 7.482 5.838 3.069 2.723 2.156	8.461 8.066 7.206 7.085 4.828 2.514 2.121 1.834	9.260 8.158 7.918 6.383 5.723 4.374 3.668 3.335	8.382 7.749 7.322 5.834 4.526 3.434 2.478 2.119	6.008 5.611 5.075 4.551 4.102 3.114 2.905 2.603	ACh(5*10*9M) ACh(1*10*5M) ACh(5*10*5M) ACh(5*10*7M) ACh(5*10*7M) ACh(5*10*7M) ACh(1*10*5M) ACh(5*10*5M)	5.81% 7.10% 10.87% 31.23% 50.00% 75.78% 82.79%	7.63% 11.19% 13.86% 27.55% 43.47% 70.28% 73.63% 79.12%	3.27% 7.79% 17.62% 19.00% 44.80% 71.26% 75.75% 79.03%	5.43% 16.69% 19.14% 34.81% 41.55% 55.33% 62.54% 65.94%	3.53% 10.82% 15.73% 32.86% 47.91% 60.48% 71.48% 75.61%	2.34% 8.79% 17.51% 26.02% 33.32% 49.38% 52.78% 57.69%	3.86% 10.18% 15.16% 25.19% 40.38% 59.46% 68.66% 73.36%
9.171 8.896 7.482 5.838 3.069 2.723 2.156	8.066 7.206 7.085 4.828 2.514 2.121 1.834	8.158 7.918 6.383 5.723 4.374 3.668 3.335	7.749 7.322 5.834 4.526 3.434 2.478 2.119	5.611 5.075 4.551 4.102 3.114 2.905 2.603	ACh(5*10*9M) ACh(1*10*5M) ACh(5*10*5M) ACh(5*10*7M) ACh(5*10*7M) ACh(5*10*7M) ACh(1*10*5M) ACh(5*10*5M)	5.81% 7.10% 10.87% 31.23% 50.00% 75.78% 82.79%	11.19% 13.86% 27.55% 43.47% 70.28% 73.63% 79.12%	7.79% 17.62% 19.00% 44.80% 71.26% 75.75% 79.03%	16.69% 19.14% 34.81% 41.55% 55.33% 62.54% 65.94%	10.82% 15.73% 32.86% 47.91% 60.48% 71.48% 75.61%	8.79% 17.51% 26.02% 33.32% 49.38% 52.78% 57.69%	10.18% 15.16% 25.19% 40.38% 59.46% 68.66% 73.36%
8.896 7.482 5.838 3.069 2.723 2.156	7.206 7.085 4.828 2.514 2.121 1.834	7.918 6.383 5.723 4.374 3.668 3.335	7.322 5.834 4.526 3.434 2.478 2.119	5.075 4.551 4.102 3.114 2.905 2.603	ACh(1*10 ⁻⁸ M) ACh(5*10 ⁻⁸ M) ACh(1*10 ⁻⁷ M) ACh(5*10 ⁻⁷ M) ACh(1*10 ⁻⁶ M) ACh(5*10 ⁻⁶ M)	7.10% 10.87% 31.23% 50.00% 75.78% 82.79%	13.86% 27.55% 43.47% 70.28% 73.63% 79.12%	17.62% 19.00% 44.80% 71.26% 75.75% 79.03%	19.14% 34.81% 41.55% 55.33% 62.54% 65.94%	15.73% 32.86% 47.91% 60.48% 71.48% 75.61%	17.51% 26.02% 33.32% 49.38% 52.78% 57.69%	15.16% 25.19% 40.38% 59.46% 68.66% 73.36%
7.482 5.838 3.069 2.723 2.156	7.085 4.828 2.514 2.121 1.834	6.383 5.723 4.374 3.668 3.335	5.834 4.526 3.434 2.478 2.119	4.551 4.102 3.114 2.905 2.603	ACh(5*10 ⁻⁸ M) ACh(1*10 ⁻⁷ M) ACh(5*10 ⁻⁷ M) ACh(1*10 ⁻⁶ M) ACh(5*10 ⁻⁶ M)	10.87% 31.23% 50.00% 75.78% 82.79%	27.55% 43.47% 70.28% 73.63% 79.12%	19.00% 44.80% 71.26% 75.75% 79.03%	34.81% 41.55% 55.33% 62.54% 65.94%	32.86% 47.91% 60.48% 71.48% 75.61%	26.02% 33.32% 49.38% 52.78% 57.69%	25.19% 40.38% 59.46% 68.66% 73.36%
5.838 3.069 2.723 2.156	4.828 2.514 2.121 1.834	5.723 4.374 3.668 3.335	4.526 3.434 2.478 2.119	4.102 3.114 2.905 2.603	ACh(1*10 ⁻⁷ M) ACh(5*10 ⁻⁷ M) ACh(1*10 ⁻⁶ M) ACh(5*10 ⁻⁶ M)	31.23% 50.00% 75.78% 82.79%	43.47% 70.28% 73.63% 79.12%	44.80% 71.26% 75.75% 79.03%	41.55% 55.33% 62.54% 65.94%	47.91% 60.48% 71.48% 75.61%	33.32% 49.38% 52.78% 57.69%	40.38% 59.46% 68.66% 73.36%
3.069 2.723 2.156	2.514 2.121 1.834	4.374 3.668 3.335	3.434 2.478 2.119	3.114 2.905 2.603	ACh(5*10 ⁻⁷ M) ACh(1*10 ⁻⁶ M) ACh(5*10 ⁻⁶ M)	50.00% 75.78% 82.79%	70.28% 73.63% 79.12%	71.26% 75.75% 79.03%	55.33% 62.54% 65.94%	60.48% 71.48% 75.61%	49.38% 52.78% 57.69%	59.46% 68.66% 73.36%
2.723 2.156	2.121 1.834	3.668 3.335	2.478 2.119	2.905 2.603	ACh(1*10 ⁻⁶ M) ACh(5*10 ⁻⁶ M)	75.78% 82.79%	73.63% 79.12%	75.75% 79.03%	62.54% 65.94%	71.48% 75.61%	52.78% 57.69%	68.66% 73.36%
2.156	1.834	3.335	2.119	2.603	ACh(5*10-6M)	82.79%	79.12%	79.03%	65.94%	75.61%	57.69%	73.36%
	_		_									
					Healt 10 My	0010070	7217270	1510270	0010070	1015070	0710270	
												7010270
									271			
		Ш										
		ш							- 3			
	Ш											
		ш								2		
		ш										
			_									
					Way and a second second				-	- 10		
	77	ш	1									
								100				
	3.5											
	200	ш										
		700	4		- 45				-	7.1		
rta contr	act value	e(mN)						Relaxatio	n(%NE)			
HF-			HF-	HF-								
DG-2	DG-3	DG-4	DG-5	DG-6								
8.007	12.925	9.546	11.383	10.671		HF-DG-						
					101011000	1 10 0 70/						Mean
												6.09%
		_										9.38%
4.001												
	8.003	5.371	5.839	5.771	ACh(1*10 ⁻⁷ M)	60.27%	50.03%	48 080%	44.7406	49 700%		
	6 403	2.03.6	2 027	2 001	4 600 400 - 7-							47.79%
3.025	6.401	2.916	3.837	3.991	ACh(5*10 ⁻⁷ M)	73.35%	62.22%	50.48%	69.45%	66.29%	62.60%	64.07%
3.025 2.347	5.015	2.409	3.013	3.137	ACh(1*10 ⁻⁶ M)	73.35% 76.10%	62.22% 70.69%	50.48% 61.20%	69.45% 74.76%	66.29% 73.53%	62.60% 70.60%	64.07% 71.15%
3.025			_			73.35% 76.10% 80.01%	62.22% 70.69%	50.48%	69.45% 74.76% 79.75%	66.29%	62.60%	64.07%
8 7 6 6	HF- 0G-2 .007 .142 .907 .937 .393	HF- HF- 0G-2 DG-3 .007 12.925 .142 12.319 .907 12.225 .937 11.935 .393 10.915	0G-2 DG-3 DG-4 .007 12.925 9.546 .142 12.319 9.305 .907 12.225 9.031 .937 11.935 8.917 .393 10.915 7.332	HF- HF- HF- HF- DG-2 DG-3 DG-4 DG-5 .007 12.925 9.546 11.383 .142 12.319 9.305 10.992 .907 12.225 9.031 10.415 .937 11.935 8.917 9.585 .393 10.915 7.332 9.147	HF- HF- HF- HF- HF- HF- HF- HG-2 DG-3 DG-4 DG-5 DG-6 .007 12.925 9.546 11.383 10.671 .142 12.319 9.305 10.992 10.138 .907 12.225 9.031 10.415 9.605 .937 11.935 8.917 9.585 9.037 .393 10.915 7.332 9.147 8.787	HF- HF- HF- DG-2 DG-3 DG-4 DG-5 DG-6 .007 12.925 9.546 11.383 10.671 .142 12.319 9.305 10.992 10.138 ACh(1*10*9M) .907 12.225 9.031 10.415 9.605 ACh(5*10*9M) .937 11.935 8.917 9.585 9.037 ACh(1*10*3M) .393 10.915 7.332 9.147 8.787 ACh(5*10*3M)	HF- HF- HF- DG-2 DG-3 DG-4 DG-5 DG-6 .007 12.925 9.546 11.383 10.671 HF-DG-1 .142 12.319 9.305 10.992 10.138 ACh(1*10-9M) 10.07% .907 12.225 9.031 10.415 9.605 ACh(5*10-9M) 13.25% .937 11.935 8.917 9.585 9.037 ACh(1*10-9M) 23.26% .393 10.915 7.332 9.147 8.787 ACh(5*10-9M) 37.95%	HF- HF- DG-2 DG-3 DG-4 DG-5 DG-6 .007 12.925 9.546 11.383 10.671 HF-DG-1 2 .142 12.319 9.305 10.992 10.138 ACh(1*10*3M) 10.07% 10.80% .907 12.225 9.031 10.415 9.605 ACh(5*10*3M) 13.25% 13.74% .937 11.935 8.917 9.585 9.037 ACh(1*10*3M) 23.26% 13.36% .393 10.915 7.332 9.147 8.787 ACh(5*10*3M) 37.95% 20.16%	HF- HF- DG-3 DG-4 DG-5 DG-6 .007 12.925 9.546 11.383 10.671 HF-DG- 1 2 3 .142 12.319 9.305 10.992 10.138 ACh(1±10-9M) 10.07% 10.80% 4.69% .907 12.225 9.031 10.415 9.605 ACh(5±10-9M) 13.25% 13.74% 5.42% .937 11.935 8.917 9.585 9.037 ACh(1±10-9M) 23.26% 13.36% 7.66% .393 10.915 7.332 9.147 8.787 ACh(5±10-9M) 37.95% 20.16% 15.55%	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$


	Arg	g1/β-Actin va	lue			ı	Normalized	to NG	
	NG	DG	LF-DG	HF-DG		NG	DG	LF-DG	HF-DO
	0.50	0.72	0.39	0.53		172.94%	246.86%	135.45%	182.079
	0.20	0.47	0.19	0.24		69.46%	160.52%	64.75%	82.469
	0.14	0.68	0.29	0.51		49.51%	233.05%	100.60%	176.73
	0.29	1.09	0.55	0.31		99.53%	375.60%	191.03%	107.50
	0.04	0.54	0.44	0.30		12.11%	185.69%	153.09%	102.55
	0.21	0.46	0.51	0.29		71.43%	158.97%	174.71%	101.45
	0.16	0.31	0.13	0.07		56.55%	107.02%	45.47%	24.619
	0.34	0.62	0.54	0.23		115.73%	213.94%	186.61%	78.85%
	0.29	0.57		0.67		101.22%	196.06%		229.40
	0.73					251.52%			
Mean	0.29	0.60	0.38	0.35	Mean	100.00%	208.63%	131.46%	120.62
1		scale value (
	NG-1	DG-1	LF-DG-1	HF-DG-1					
Argl	94731.00	130249.00	58089.00	70641.00					
β-Actin	188924.00	181974.00	147914.00	133816.00					
Arg1/β-Actin	0.50	0.72	0.39	0.53					
	NG-2	DG-2	LF-DG-2	HF-DG-3					
Argl	40057.00	87992.00	34650.00	41028.00					
β-Actin	198904.00	189060.00	184564.00	171606.00					
rg1/β-Actin	0.20	0.47	0.19	0.24					
igi/p-Actin	0.20	0.4/	0.19	0.24					
	NG-3	DG-3	LF-DG-3	HF-DG-3					
Augl									
Argl	25956.00	112256.00	51399.00	96591.00					
β-Actin	180802.00	166132.00	176216.00	188504.00					
Arg1/β-Actin	0.14	0.68	0.29	0.51					
	Arg1-we	stern blot da	ta (1~3)	_		β-Actin	-western bl	ot data (1~3)
			-8=	50kD 40kD 30kD					
NG DG I		OG LF HFN	G DG LF F			DG LF HF		HF NG DG 2 3 3	LF HF

	Grav	scale value ((4~6)	-	
	NG-4	DG-4	LF-DG-4	HF-DG-4	
Argl	39826.00	140971.00	101719.00	57536.00	
β-Actin	138004.00	129448.00	183652.00	184598.00	
Arg1/β-Actin		1.09	0.55	0.31	
	NG-5	DG-5	LF-DG-5	HF-DG-5	
Argl	5765.00	74928.00	61803.00	50628.00	
β-Actin	164225.00	139173.00	139232.00	170280.00	
Arg1/β-Actin	0.04	0.54	0.44	0.30	
	NG-6	DG-6	LF-DG-6	HF-DG-6	
Argl	36597.00	82494.00	91159.00	65779.00	
β-Actin	176708.00	178975.00	179959.00	223630.00	
Arg1/β-Actin	0.21	0.46	0.51	0.29	
	Arg1-we	stern blot da	ita (4~6)		β-Actin-western blot data(4~6)
-331					
-				50kD	
-				50kD 40kD	
				40kD	
-			==:	40kD 30kD	
-				40kD 30kD	
				40kD 30kD	
-	F HF NG D	G LF HF N		40kD 30kD	

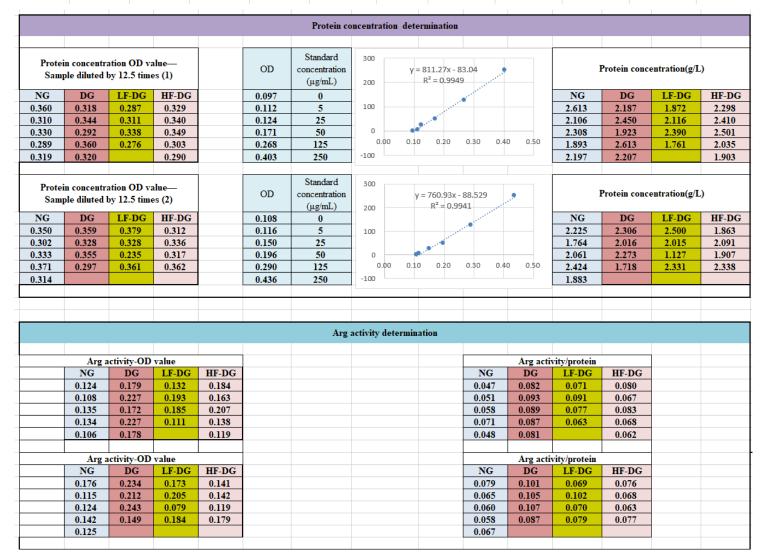
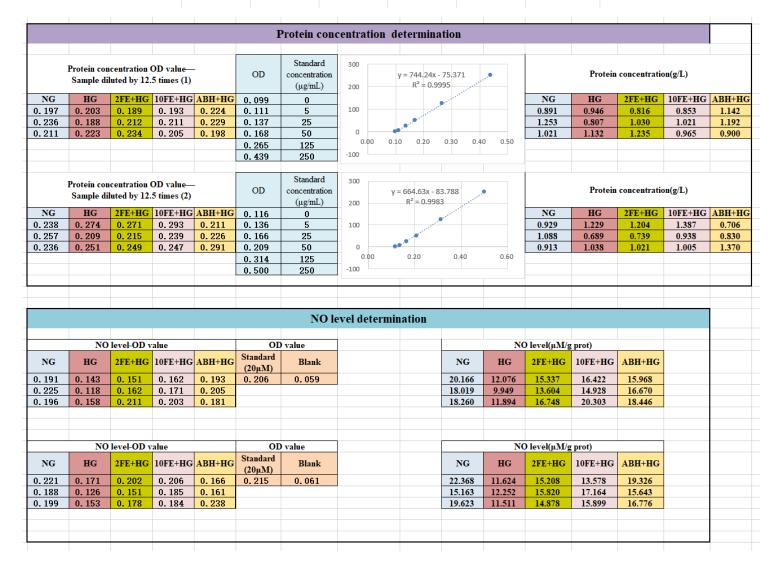

		scale value (
	NG-7	DG-7	LF-DG-7	HF-DG-7						
Argl	32351.00	67403.00	29713.00	14572.00						
β-Actin	197306.00	217223.00	225396.00	204193.00						
Arg1/β-Actin	0.16	0.31	0.13	0.07						
	3751.0	200	TERRO	TIE DO C						
	NG-8	DG-8	LF-DG-8	HF-DG-8						
Argl	67238.00	98743.00	98058.00	48338.00						
β-Actin	200389.00	159189.00	181234.00	211431.00						
Arg1/β-Actin	0.34	0.62	0.54	0.23						
	NG 0	DC 0		HE DC 0						
	NG-9	DG-9		HF-DG-9						
Argl	52626.00	120336.00		128970.00						
β-Actin	179316.00	211683.00		193906.00						
Arg1/β-Actin	0.29	0.57		0.67						
	NG-10									
Argl	114674.00									
β-Actin	157245.00									
Arg1/β-Actin	0.73									
	Argl-wes	stern blot da	ta (7~10)			β-Acti	n-west	ern blo	t data (7-	~10)
				50kD						
10 10 E 20 10 E 20 10 E	DESIGN TO			40kD	-	200	-	-		
				1.0			-			
			and other t							
		60 eg		30kD						
			-	30kD						
			- 2 2	30kD						
	-			30kD						
	1		- 2 2							
		OG LF HFN		iF .						G DF H

	Fig.	4C raw	data	
	NO lev	el(μmol/g j	protein)	
	NG	DG	LF-DG	HF-DG
	23.429	15.911	13.642	16.044
	24.263	12.215	14.671	20.302
	18.652	12.596	20.855	17.824
	20.302	15.664	12.600	16.128
	18.515	11.206	16.423	18.754
	23.349	9.956	16.367	16.279
	19.688	13.419	13.087	17.059
	16.863	11.660	19.274	14.614
·	17.398	11.444		15.668
	20.624			
Mean	20.31	12.67	15.87	16.96

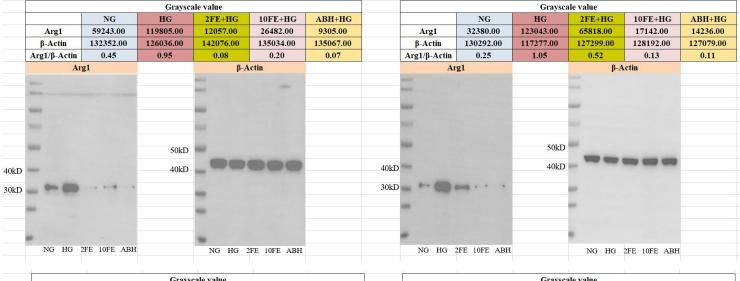
				1	Mean	20.31	12.67	15.87	16.9	96				
				<u> </u>	<u> </u>				<u>'</u>	<u> </u>				
					Pi	otein conc	entration	determinat	ion					
Pro	tein concent	ration OD va	alue—			Standard	300				l .	ъ		
		by 12.5 time			OD	concentration		y = 597.51x			1	Protein conce	entration(g/L	.)
						(μg/mL)	200	$R^2 = 0.9$	921					
NG	DG	LF-DG	HF-DG		0.107	0			. arrere		NG	DG	LF-DG	HF-I
0.244	0.258	0.264	0.280		0.114	5	100				0.960	1.065	1.110	1.22
0.271	0.257	0.284	0.229		0.186	25					1.162	1.057	1.259	0.84
0.255	0.266	0.267	0.274		0.194	50	0.00	0.20	0.40	0.60	1.043	1.125	1.132	1.18
0.229	0.265	0.263	0.263		0.322	125		0.20	0.40	0.60	0.848	1.117	1.102	1.10
0.249	0.288		0.282		0.531	250	-100				0.998	1.289		1.24
Pro	tein concent	ration OD va	alue—			Standard	300							
		by 12.5 time			OD	concentration		y = 676.49		, .]	Protein conce	entration(g/L	.)
						(μg/mL)	200	$R^2 = 0$.9995					
NG	DG	LF-DG	HF-DG		0.093	0	-		and the second		NG	DG	LF-DG	HF-D
0.238	0.247	0.270	0.195		0.096	5	100				1.227	1.303	1.498	0.863
0.183	0.237	0.213	0.210		0.132	25	100				0.762	1.219	1.016	0.99
0.218	0.219	0.226	0.211		0.167	50					1.058	1.066	1.125	0.99
0.261	0.213	0.238	0.251		0.282	125	0	0.40	0.30 0.4	0 0.50	1.421	1.016	1.227	1.33
0.244					0.460	250	0.00	0.10 0.20	0.30 0.4	0.50	1.278			
						NO les	vel detern	nination						
						NO IC	rei actern	шинаноп						
	N	D level-OD v	alue		OI	value				NO level	(μM/g prot)			
	NG	D.C.		HF-DG	Standard	Blank					LEDG	HF-DG		
		DG	LF-DG	Hr-DG	(20µM)	DIALIK			NG	DG	LF-DG	nr-DG		
	0.221				(20µM) 0.203									
	0.221 0.262	0.181	0.168 0.192	0.201	(20µM) 0.203	0.059			NG 23.429 24.263	15.911	13.642 14.671	16.044		
			0.168	0.201 0.183					23.429	15.911 12.215	13.642	16.044 20.302		
	0.262	0.181 0.152	0.168 0.192	0.201					23.429 24.263	15.911	13.642 14.671	16.044		
	0.262 0.199	0.181 0.152 0.161	0.168 0.192 0.229	0.201 0.183 0.211					23.429 24.263 18.652	15.911 12.215 12.596	13.642 14.671 20.855	16.044 20.302 17.824		
	0.262 0.199 0.183	0.181 0.152 0.161 0.185	0.168 0.192 0.229	0.201 0.183 0.211 0.187					23.429 24.263 18.652 20.302	15.911 12.215 12.596 15.664	13.642 14.671 20.855	16.044 20.302 17.824 16.128		
	0.262 0.199 0.183 0.192	0.181 0.152 0.161 0.185	0.168 0.192 0.229 0.159	0.201 0.183 0.211 0.187	0.203				23.429 24.263 18.652 20.302	15.911 12.215 12.596 15.664 11.206	13.642 14.671 20.855	16.044 20.302 17.824 16.128		
	0.262 0.199 0.183 0.192	0.181 0.152 0.161 0.185 0.163	0.168 0.192 0.229 0.159	0.201 0.183 0.211 0.187	0.203 OI Standard	0.059			23.429 24.263 18.652 20.302	15.911 12.215 12.596 15.664 11.206	13.642 14.671 20.855 12.600	16.044 20.302 17.824 16.128		
	0.262 0.199 0.183 0.192	0.181 0.152 0.161 0.185 0.163	0.168 0.192 0.229 0.159	0.201 0.183 0.211 0.187 0.227	0.203 OI	0.059 O value			23.429 24.263 18.652 20.302 18.515	15.911 12.215 12.596 15.664 11.206 NO level	13.642 14.671 20.855 12.600 (µM/g prot)	16.044 20.302 17.824 16.128 18.754		
	0.262 0.199 0.183 0.192 NG	0.181 0.152 0.161 0.185 0.163 D level-OD v	0.168 0.192 0.229 0.159	0.201 0.183 0.211 0.187 0.227	OI Standard (20µM)	0.059 Value Blank			23.429 24.263 18.652 20.302 18.515	15.911 12.215 12.596 15.664 11.206 NO level	13.642 14.671 20.855 12.600 (µM/g prot) LF-DG	16.044 20.302 17.824 16.128 18.754		
	0.262 0.199 0.183 0.192 NG NG	0.181 0.152 0.161 0.185 0.163 D level-OD v DG 0.159 0.184	0.168 0.192 0.229 0.159 calue LF-DG 0.245	0.201 0.183 0.211 0.187 0.227 HF-DG 0.167 0.188	OI Standard (20µM)	0.059 Value Blank			23.429 24.263 18.652 20.302 18.515 NG 23.349 19.688	15.911 12.215 12.596 15.664 11.206 NO level DG 9.956 13.419	13.642 14.671 20.855 12.600 (μM/g prot) LF-DG 16.423 16.367	16.044 20.302 17.824 16.128 18.754 HF-DG 16.279 17.059		
	0.262 0.199 0.183 0.192 NG NG 0.275 0.174	0.181 0.152 0.161 0.185 0.163 D level-OD v	0.168 0.192 0.229 0.159 calue LF-DG 0.245 0.186	0.201 0.183 0.211 0.187 0.227 HF-DG 0.167	OI Standard (20µM)	0.059 Value Blank			23.429 24.263 18.652 20.302 18.515 NG 23.349	15.911 12.215 12.596 15.664 11.206 NO level DG 9.956	13.642 14.671 20.855 12.600 (µM/g prot) LF-DG 16.423	16.044 20.302 17.824 16.128 18.754 HF-DG		
	0.262 0.199 0.183 0.192 NG NG 0.275 0.174 0.195	0.181 0.152 0.161 0.185 0.163 D level-OD v DG 0.159 0.184 0.155	0.168 0.192 0.229 0.159 calue LF-DG 0.245 0.186 0.172	0.201 0.183 0.211 0.187 0.227 HF-DG 0.167 0.188 0.171	OI Standard (20µM)	0.059 Value Blank			23.429 24.263 18.652 20.302 18.515 NG 23.349 19.688 16.863	15.911 12.215 12.596 15.664 11.206 NO level DG 9.956 13.419 11.660	13.642 14.671 20.855 12.600 (#M/g prot) LF-DG 16.423 16.367 13.087	16.044 20.302 17.824 16.128 18.754 HF-DG 16.279 17.059		

				Fig .5D	raw da	ata				
	Arg	activity/p	rotein			No	ormalized t	o NG		
	NG	DG	LF-DG	HF-DG		NG	DG	LF-DG	HF-DG	
	0.047	0.082	0.071	0.080		78.42%	135.22%	116.48%	132.25%	
	0.051	0.093	0.091	0.067		84.84%	152.94%	150.44%	111.33%	
	0.058	0.089	0.077	0.083		96.48%	147.32%	127.54%	136.51%	
	0.071	0.087	0.063	0.068		117.24%	143.63%	104.17%	111.73%	
	0.048	0.081	0.069	0.062		79.51%	133.23%	114.24%	103.16%	
	0.079	0.101	0.102	0.076		130.50%	167.23%	167.96%	124.87%	
	0.065	0.105	0.070	0.068		107.35%	173.77%	115.17%	112.34%	
	0.060	0.107	0.079	0.063		99.34%	176.80%	130.05%	103.22%	
	0.058	0.087		0.077		96.37%	143.16%		126.45%	
	0.067					109.96%				
Mean	0.06	0.09	0.08	0.07	Mean	100.00%	152.59%	128.26%	117.98%	



ACh(1-10-\$\(^{\frac{1}}\)\) 11.824 15.271 14.613 12.231 11.261 15.951 ACh(\(^{\frac{1}}\)\) 11.523 14.913 14.421 12.016 11.318 15.403 ACh(\(^{\frac{1}}\)\) 10.938 14.904 15.111 11.921 10.512 15.004 ACh(\(^{\frac{1}}\)\) 10.938 14.904 15.111 11.921 10.512 15.004 ACh(\(^{\frac{1}}\)\) 10.938 14.904 15.111 11.921 10.512 15.004 ACh(\(^{\frac{1}}\)\) 10.938 14.904 15.113 10.912 13.113 ACh(\(^{\frac{1}}\)\) 10.938 14.904 15.133 10.201 13.113 ACh(\(^{\frac{1}}\)\) 10.938 14.904 15.238 17.938 17.939 17.144 ACh(\(^{\frac{1}}\)\) 11.238 17.939 17.347 7.589 ACh(\(^{\frac{1}}\)\) 10.938 13.123 17.13 3.061 3.512 2.903 ACh(\(^{\frac{1}}\)\) 10.938 13.123 17.13 3.061 3.512 2.903 ACh(\(^{\frac{1}}\)\) 10.938 13.904 13.912 13.913 ACh(\(^{\frac{1}}\)\) 10.938 13.6384 23.084 23.094 23.094 45.0394 45.							Fi	g .6A raw data	a						
ACh(10 ¹⁰ M) 1.0.10 16.064 16.259 13.085 12.725 16.157 ACh(10 ¹⁰ M) 11.824 15.271 14.613 12.231 11.261 15.951 ACh(10 ¹⁰ M) 11.824 14.913 14.421 12.016 11.318 15.403 ACh(11 ¹⁰ M) 10.938 14.904 15.111 11.921 10.512 15.004 ACh(11 ¹⁰ M) 6.704 9.189 11.512 7.193 7.437 7.889 ACh(11 ¹⁰ M) 6.704 9.189 11.512 7.193 7.437 7.889 ACh(11 ¹⁰ M) 4.168 6.737 7.108 6.425 6.801 5.313 ACh(11 ¹⁰ M) 6.704 9.189 11.2 3.771 3.061 3.512 2.903 ACh(11 ¹⁰ M) 1.518 2.015 2.258 11.42 2.514 2.508 ACh(11 ¹⁰ M) 1.023 1.904 1.937 0.822 2.295 2.417 ACh(11 ¹⁰ M) 1.023 1.904 1.937 0.822 2.295 2.417 ACh(11 ¹⁰ M) 2.204 1.030 1.724 8.839 ACh(11 ¹⁰ M) 2.204 1.030 1.725 18.014 13.033 12.832 ACh(11 ¹⁰ M) 2.204 1.303 1.725 1.304 13.303 12.832 ACh(11 ¹⁰ M) 2.301 2.249 10.831 11.31 17.551 11.875 12.201 ACh(11 ¹⁰ M) 2.301 2.249 10.831 11.31 17.551 11.875 12.201 ACh(11 ¹⁰ M) 2.301 2.313 5.472 10.341 13.303 17.851 2.206 ACh(11 ¹⁰ M) 2.301 2.313 5.472 10.341 13.303 17.851 2.206 ACh(11 ¹⁰ M) 2.301 1.314 1.315 1.351 1.351 1.353 1.2531 ACh(11 ¹⁰ M) 2.301 1.304 1.305 1.773 1.555 1.3231 ACh(11 ¹⁰ M) 2.304 1.305 1.775 1.306 1.305 1.3231 ACh(11 ¹⁰ M) 2.304 1.305 1.775 1.306 1.305 1.3231 ACh(11 ¹⁰ M) 2.304 1.305 1.775 1.306 1.305 1.3231 ACh(11 ¹⁰ M) 2.304 1.305 1.775 1.306 1.305 1.3231 ACh(11 ¹⁰ M) 2.304 1.305 1.775 1.306 1.305 1.3231 ACh(11 ¹⁰ M) 2.304 1.305 1.775 1.305		Aorta	contra	ct valu	e(mN)					R	elaxati	on(%N	E)		
ACh(1°10°M) 11.824 15.271 14.613 12.231 11.261 15.951 ACh(1°10°M) 9.12% 4.94% 10.12% 6.53% 11.50% 1.27% 7.25 ACh(5°10°M) 11.523 14.913 14.421 12.016 11.318 15.403 ACh(1°10°M) 11.43% 7.17% 11.30% 8.17% 11.05% 4.67% 8.97 ACh(1°10°M) 8.89 12.852 13.775 10.513 10.001 13.113 ACh(1°10°M) 15.93% 10.96% 7.06% 8.90% 17.39% 7.14% 11.24 ACh(5°10°M) 6.704 9.189 11.512 7.193 7.437 7.589 ACh(1°10°M) 48.47% 42.80% 20.20% 45.03% 41.56% 83.03% 33.3 ACh(5°10°M) 4.80 6.737 7.108 6.425 6.30 5.313 ACh(5°10°M) 48.47% 42.80% 20.20% 45.03% 41.56% 83.03% 33.3 ACh(5°10°M) 1.818 2.015 2.258 1.142 2.514 2.508 ACh(1°10°M) 88.33% 87.46% 86.11% 91.27% 80.24% 86.33 ACh(1°10°M) 2.301 11.003 11.672 18.014 13.033 12.82 ACh(1°10°M) 2.14% 81.59% 83.09% 93.72% 81.96% 85.04% 88.18 ACh(1°10°M) 2.301 11.003 11.672 18.014 13.033 12.82 ACh(1°10°M) 3.46% 4.60% 7.23% 5.74% 7.84% 4.72% 5.60 ACh(1°10°M) 2.249 10.638 11.131 17.551 11.575 12.201 ACh(1°10°M) 3.14% 6.63% 17.63% 17.84% 4.72% 5.60 ACh(1°10°M) 1.305 2.329 1.335 3.795 1.331 3.71 3.618 3.231 ACh(1°10°M) 3.46% 4.60% 7.23% 5.74% 3.20% 4.19 ACh(1°10°M) 2.301 11.003 11.672 18.014 13.033 12.82 ACh(1°10°M) 3.46% 4.60% 7.23% 5.74% 5.74% 5.00% 5.74%		NG-1	NG-2	NG-3	NG-4	NG-5	NG-6								
ACh(1-10-3h) 11.824 15.271 14.613 12.231 11.261 15.951 ACh(1-10-3h) 9.12% 4.94% 10.12% 6.53% 11.50% 1.27% 7.25 ACh(5-10-3h) 11.523 14.913 14.421 12.016 11.318 15.403 ACh(5-10-3h) 11.43% 7.17% 11.30% 8.17% 11.06% 4.67% 8.77 ACh(5-10-3h) 10.938 1.345 13.775 10.513 10.201 13.113 ACh(5-10-3h) 15.93% 10.96% 7.06% 8.90% 7.13% 11.23 ACh(5-10-3h) 6.704 9.139 13.512 7.133 7.437 7.559 ACh(1-10-3h) 48.47% 42.80% 29.20% 45.03% 41.56% 53.03% 43.38 ACh(5-10-3h) 4.168 6.737 7.108 6.425 6.08 5.313 ACh(5-10-3h) 48.47% 42.80% 29.20% 45.03% 41.56% 53.03% 43.38 ACh(1-10-3h) 1.518 2.015 2.258 1.142 2.514 2.508 ACh(1-10-3h) 53.33% 87.46% 86.11% 91.27% 80.24% 84.89% 86.32 ACh(1-10-3h) 1.023 1.904 1.937 0.822 2.295 2.417 ACh(1-10-3h) 92.14% 88.15% 88.09% 93.72% 81.96% 85.04% 88.18 ACh(1-10-3h) 2.301 11.003 1.672 18.014 13.033 12.32 ACh(1-10-3h) 2.57% 3.62% 6.07% 5.52% 4.34% 3.02% 4.19 ACh(1-10-3h) 2.409 0.638 11.31 1.755 1.1575 12.201 ACh(1-10-3h) 3.14% 6.03% 7.73% 5.73% 3.25% ACh(1-10-3h) 3.14% 6.03% 7.73% 5.74% 5.73% 3.02% 4.19 ACh(1-10-3h) 2.409 0.638 11.31 1.755 1.1575 12.201 ACh(1-10-3h) 3.14% 6.03% 7.73% 5.74% 7.84% 7.73% 8.94 ACh(1-10-3h) 1.203 1.315 3.72 1.311 1.755 1.1575 12.201 ACh(1-10-3h) 3.14% 6.03% 7.73% 5.74% 7.84% 7.73% 8.94 ACh(1-10-3h) 1.203 2.315 3.72 1.391 1.303 12.832 ACh(1-10-3h) 3.46% 4.60% 7.23% 5.74% 3.43% 3.02% 4.19 ACh(1-10-3h) 2.309 1.315 3.72 1.345 1.3575 1.266 ACh(1-10-3h) 3.46% 4.60% 7.23% 5.74% 5.74% 5.02% 5.02% 6.07% 5.52% 4.34% 5.02% 5.02% 6.07% 5.52% 4.34% 5.02% 5.02% 6.07% 5.52% 6.07% 5.52% 6.07% 5.52% 6.07% 5.52% 6.07% 5.52% 6.07% 6.02% 6.02% 6.02% 6.02% 6.02	ACh(0M)	13.010	16.064	16.259	13.085	12.725	16.157		NG-1	NG-2	NG-3	NG-4	NG-5	NG-6	Mea
ACh(1-10-3h) 10.938 14.304 15.111 11.921 10.512 15.004 ACh(1-10-3h) 8.899 12.852 13.775 10.513 10.201 13.113 ACh(1-10-3h) 6.704 9.189 11.512 7.193 7.437 7.589 ACh(1-10-3h) 6.704 9.189 11.512 7.193 7.437 7.589 ACh(1-10-3h) 6.704 9.189 12.852 13.775 10.513 10.201 13.113 ACh(1-10-3h) 6.704 9.189 12.852 13.775 10.513 10.201 13.113 ACh(1-10-3h) 6.704 9.189 12.852 13.775 10.513 10.201 13.113 ACh(1-10-3h) 6.704 9.189 12.852 13.771 10.6425 6.801 5.313 ACh(1-10-3h) 6.796% 8.809% 92.20% 45.03% 41.56% 53.03% 43.56 ACh(1-10-3h) 1.518 1.015 10.518 10.51	ACh(1*10-9M)	11.824	15.271	14.613	12.231	11.261	15.951	ACh(1*10-9M)	9.12%	4.94%	10.12%	6.53%	11.50%	1.27%	7.259
ACh(\$\(\frac{1}{0}\)^{\(\frac{1}{0}\)}\) 8.889 12.852 13.775 10.513 10.201 13.113 ACh(\$(\frac{1}{0}\)^{\(\frac{1}{0}\)}\) 6.704 9.189 11.512 7.193 7.437 7.589 ACh(\$(\frac{1}{0}\)^{\(\frac{1}{0}\)}\) 6.704 9.189 11.512 7.193 7.437 7.589 ACh(\$(\frac{1}{0}\)^{\(\frac{1}{0}\)}\) 6.704 9.189 11.512 7.193 7.437 7.589 ACh(\$(\frac{1}{0}\)^{\(\frac{1}{0}\)}\) 16.23 6.6737 7.108 6.425 6.801 5.313 ACh(\$(\frac{1}{0}\)^{\(\frac{1}{0}\)}\) 10.23 3.995 5.112 3.771 3.061 3.512 2.903 ACh(\$(\frac{1}{0}\)^{\(\frac{1}{0}\)}\) 78.41\(\frac{1}{0}\) 68.69\(\frac{1}{0}\) 76.81\(\frac{1}{0}\) 68.69\(\frac{1}{0}\) 78.41\(\frac{1}{0}\) 68.69\(\frac{1}{0}\) 68.19\(\frac{1}{0}\) 78.41\(\frac{1}{0}\) 68.19\(\frac{1}{0}\) 78.41\(\frac{1}{0}\) 68.19\(\frac{1}{0}\) 78.41\(\frac{1}{0}\) 68.19\(\frac{1}{0}\) 78.41\(\frac{1}{0}\) 68.19\(\frac{1}{0}\) 78.41\(\frac{1}{0}\) 78.41\(\frac{1}{0}\) 78.41\(\frac{1}{0}\) 78.41\(\frac{1}{0}\) 78.41\(\frac{1}{0}\) 78.41\(\frac{1}{0}\) 78.41\(\frac{1}{0}\) 78.41\(\frac{1}{0}\) 78.61\(\frac{1}{0}\) 78.61\(\frac{1}\) 78.61\(\frac{1}\) 78.61\(\frac{1}\) 78.61\(\frac{1}\) 78.61\(\frac{1}\)	ACh(5*10 ⁻⁹ M)	11.523	14.913	14.421	12.016	11.318	15.403	ACh(5*10-9M)	11.43%	7.17%	11.30%	8.17%	11.06%	4.67%	8.979
ACh(1*10*Δh) 4.168 6.737 7.108 6.425 6.801 5.313 ACh(1*10*Δh) 4.168 6.737 7.108 6.425 6.801 5.313 ACh(1*10*Δh) 6.2809 5.112 3.771 3.061 3.512 2.903 ACh(1*10*Δh) 6.818% 6.53.1% 50.90% 6.55% 67.12% 75.74 ACh(1*10*Δh) 1.023 1.904 1.937 0.822 2.295 2.417 ACh(1*10*Δh) 92.14% 88.15% 88.09% 93.72% 81.96% 88.18 ACh(1*10*Δh) 92.14% 81.94 ACh(1*10*Δh) 9	ACh(1*10 ⁻⁸ M)	10.938	14.304	15.111	11.921	10.512	15.004	ACh(1*10-8M)	15.93%	10.96%	7.06%	8.90%	17.39%	7.14%	11.23
Ach(s*10*M) 4.168 6.737 7.108 6.425 6.801 5.313	ACh(5*10 ⁻⁸ M)	8.889	12.852	13.775	10.513	10.201	13.113	ACh(5*10 ⁻⁸ M)	31.68%	20.00%	15.28%	19.66%	19.83%	18.84%	20.88
ACh(1+10 ⁴ M) 2.809 5.112 3.771 3.061 3.512 2.903 ACh(1+10 ⁴ M) 78.41% 68.18% 76.81% 76.61% 72.40% 82.03% 75.74 ACh(5+10 ⁴ M) 1.518 2.015 2.258 1.142 2.514 2.508 ACh(1+10 ⁵ M) 83.33% 87.46% 86.11% 91.27% 80.24% 84.48% 85.33 ACh(1+10 ⁵ M) 92.14% 88.15% 88.09% 93.72% 81.96% 85.04% 88.18 ACh(1+10 ⁵ M) 2.249 81.96% 85.04% 88.18 ACh(1+10 ⁵ M) 2.3014 1.003 1.004 1.937 0.822 2.295 2.417 ACh(1+10 ⁵ M) 92.14% 88.15% 88.09% 93.72% 81.96% 85.04% 88.18 ACh(1+10 ⁵ M) 2.3014 1.103 1.105 1.	ACh(1*10 ⁻⁷ M)	6.704	9.189	11.512	7.193	7.437	7.589	ACh(1*10 ⁻⁷ M)	48.47%	42.80%	29.20%	45.03%	41.56%	53.03%	43.35
ACh(\$\frac{\text{c}}\$10\frac{\text{d}}{\text{m}}\) 1.518 2.015 2.258 1.142 2.514 2.508 ACh(\$\frac{\text{c}}\$10\frac{\text{d}}{\text{m}}\) 1.023 1.904 1.937 0.822 2.295 2.417 ACh(\$\frac{\text{c}}\$10\frac{\text{d}}{\text{m}}\) 92.14\(\text{b}\) 88.33\(\text{d}\) 87.46\(\text{b}\) 88.09\(\text{d}\) 93.72\(\text{d}\) 81.96\(\text{d}\) 85.04\(\text{d}\) 88.18 Ach(\$\frac{\text{c}}\$10\frac{\text{d}}{\text{m}}\) 22.14\(\text{d}\) 88.15\(\text{d}\) 88.09\(\text{d}\) 93.72\(\text{d}\) 81.96\(\text{d}\) 85.04\(\text{d}\) 88.18 Ach(\$\frac{\text{c}}\$10\frac{\text{d}}{\text{m}}\) 23.014 11.03 11.672 18.014 13.033 12.832 Ach(\$\frac{\text{c}}\$10\frac{\text{d}}{\text{d}}\) 23.044 11.031 11.52 17.973 12.557 12.606 Ach(\$\frac{\text{c}}\$10\frac{\text{d}}{\text{m}}\) 24.04 10.891 11.52 17.973 12.557 12.201 Ach(\$\text{c}}\$10\frac{\text{d}}{\text{d}}\) 24.04 10.349 16.683 10.007 11.782 Ach(\$\text{c}}\$10\frac{\text{d}}{\text{d}}\) 25.04 Ach(\$\text{c}}\$10\frac{\text{d}}{\text{d}}\) 15.236 4.19\(\text{d}\) 15.236 4.19\(\text{d}\) 15.236 4.19\(\text{d}\) 16.213 6.329 6.937 12.143 5.008 6.013 Ach(\$\text{c}}\$10\frac{\text{d}}{\text{d}}\) 10.207 5.102 5.892 9.902 1.701 5.314 Ach(\$\text{c}}\$10\frac{\text{d}}{\text{d}}\) 36.23\(\text{d}\) 6.23\(\text{d}\) 6.31\(\text{d}\) 6.32\(\text{d}\) 6.52\(\text{d}\) 4.19\(\text{d}\) 3.628\(\text{d}\) 6.31\(\text{d}\) 6.90\(\text{d}\) 4.19\(\text{d}\) 3.62\(\text{d}\) 6.63\(\text{d}\) 17.62\(\text{d}\) 4.15\(\text{d}\) 6.90\(\text{d}\) 6.63\(\text{d}\) 17.62\(\text{d}\) 4.15\(\text{d}\) 6.90\(\text{d}\) 6.63\(\text{d}\) 17.62\(\text{d}\) 4.15\(\text{d}\) 6.03\(\text{d}\) 1.55\(\text{d}\) 6.03\(\text{d}\) 1.55\(\text{d}\) 6.03\(\text{d}\) 1.55\(\text{d}\) 6.03\(\text{d}\) 1.55\(\text{d}\) 6.03\(\text{d}\) 1.6213 6.329 6.937 12.143 5.008 6.013 Ach(\$\text{c}}\$10\frac{\text{d}\) 5.67\(\text{d}\) 5.67\(\text{d}\) 5.67\(\text{d}\) 5.67\(\text{d}\) 5.67\(\text{d}\) 6.31\(\text{d}\) 6.93\(\text{d}\) 6.63\(\text{d}\) 4.66\(\text{d}\) 6.03\(\text{d}\) 6.63\(\text{d}\) 4.79\(\text{d}\) 6.63\(\text{d}\) 4.79\(\tex	ACh(5*10 ⁻⁷ M)	4.168	6.737	7.108	6.425	6.801	5.313	ACh(5*10 ⁻⁷ M)	67.96%	58.06%	56.28%	50.90%	46.55%	67.12%	57.81
ACh(1°10°M) 1.023 1.904 1.937 0.822 2.295 2.417 ACh(1°10°M) 92.14% 88.15% 88.09% 93.72% 81.96% 88.04% 88.18 Aorta contract value(mN) Relaxation(%NE) Relaxation(%NE) ACh(1°10°M) 23.621 11.416 12.426 19.067 13.625 13.231 ACh(1°10°M) 23.621 11.416 12.426 19.067 13.625 13.231 ACh(1°10°M) 23.014 11.003 11.672 18.014 13.033 12.832 ACh(1°10°M) 2.57% 3.62% 6.07% 5.52% 4.34% 3.02% 4.19 ACh(1°10°M) 22.804 10.891 11.528 17.973 12.857 12.606 ACh(5°10°M) 3.46% 4.60% 7.23% 5.74% 7.84% 4.72% 5.60 ACh(1°10°M) 21.315 9.472 10.349 16.638 10.007 11.782 ACh(1°10°M) 9.76% 17.03% 16.71% 12.50% 26.55% 10.95% 15.55 ACh(1°10°M) 16.213 6.329 6.937 12.143 5.008 6.013 ACh(1°10°M) 5.40% 16.21% 63.136% 16.71% 16.21% 63.24% 63.24% 54.55% 45.60% ACh(1°10°M) 10.207 5.102 5.892 9.902 1.701 5.314 ACh(1°10°M) 5.52% 65.88% 8.07% 63.24% 63.24% 54.55% 45.60% ACh(1°10°M) 10.207 5.102 5.892 9.902 1.701 5.314 ACh(1°10°M) 5.52% 65.88% 8.07% 63.24% 63.24% 64.85% 69.98% 55.64% 63.14% 69.09% 66.96% 64.88	ACh(1*10-6M)	2.809	5.112	3.771	3.061	3.512	2.903	ACh(1*10-6M)	78.41%	68.18%	76.81%	76.61%	72.40%	82.03%	75.74
Aorta contract value(mN) Relaxation(%NE) HG-1 HG-2 HG-3 HG-4 HG-5 HG-6 ACh(1°10°M) 23.621 11.416 12.426 19.067 13.625 13.231 ACh(1°10°M) 23.014 11.003 11.672 18.014 13.033 12.832 ACh(1°10°M) 2.57% 3.62% 6.07% 5.52% 4.34% 3.02% 4.19 ACh(5°10°M) 22.804 10.891 11.528 17.973 12.557 12.606 ACh(5°10°M) 3.46% 4.60% 7.23% 5.74% 7.84% 4.72% 5.60 ACh(1°10°M) 21.315 9.472 10.349 16.633 10.007 11.762 ACh(5°10°M) 9.76% 17.03% 16.71% 12.50% 26.55% 10.95% 15.53 ACh(1°10°M) 10.217 7.906 7.825 9.117 15.783 7.961 8.429 ACh(1°10°M) 24.19% 31.36% 6.63% 6.63% 63.24% 54.55% 45.76 ACh(1°10°M) 10.217 5.102 5.892 9.902 1.701 5.314 ACh(1°10°M) 5.59% 55.31% 52.88% 48.07% 87.52% 89.84% 60.0 ACh(5°10°M) 10.207 5.102 5.892 9.902 1.701 5.314 ACh(1°10°M) 5.59% 55.31% 52.88% 48.07% 87.52% 89.84% 60.0 ACh(5°10°M) 8.438 3.427 5.512 7.028 4.211 4.372 ACh(5°10°M) 64.28% 69.98% 55.64% 63.14% 69.09% 66.96% 64.88	ACh(5*10-6M)	1.518	2.015	2.258	1.142	2.514	2.508	ACh(5*10 ⁻⁶ M)	88.33%	87.46%	86.11%	91.27%	80.24%	84.48%	86.32
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ACh(1*10 ⁻⁵ M)	1.023	1.904	1.937	0.822	2.295	2.417	ACh(1*10-5M)	92.14%	88.15%	88.09%	93.72%	81.96%	85.04%	88.18
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									100	-					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										_					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				4	_				~						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					540										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					414		UR				J				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Aorta	contra	ct valu	e(mN)					R	elaxati	on(%N	E)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		HG-1	HG-2	HG-3	HG-4	HG-5	HG-6								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ACh(0M)	23.621	11.416	12.426	19.067	13.625	13.231		HG-1	HG-2	HG-3	HG-4	HG-5	HG-6	Mea
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ACh(1*10-9M)	23.014	11.003	11.672	18.014	13.033	12.832	ACh(1*10-9M)	2.57%	3.62%	6.07%	5.52%	4.34%	3.02%	4.19
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ACh(5*10-9M)	22.804	10.891	11.528	17.973	12.557	12.606	ACh(5*10-9M)	3.46%	4.60%	7.23%	5.74%	7.84%	4.72%	5.60
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ACh(1*10-8M)	22.409	10.638	11.131	17.551	11.875	12.201	ACh(1*10 ⁻⁸ M)	5.13%	6.81%	10.42%	7.95%	12.84%	7.78%	8.49
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ACh(5*10 ⁻⁸ M)	21.315	9.472	10.349	16.683	10.007	11.782			17.03%	16.71%	12.50%	26.55%	10.95%	15.59
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ACh(1*10 ⁻⁷ M)	17.906	7.825	9.117	15.708	7.961	8.429	ACh(1*10 ⁻⁷ M)	24.19%	31.46%	26.63%	17.62%	41.57%	36.29%	29.63
ACh(5*10-6M) 8.438 3.427 5.512 7.028 4.211 4.372 ACh(5*10-6M) 64.28% 69.98% 55.64% 63.14% 69.09% 66.96% 64.85	ACh(5*10 ⁻⁷ M)	16.213	6.329	6.937	12.143	5.008	6.013	ACh(5*10 ⁻⁷ M)	31.36%	44.56%	44.17%	36.31%	63.24%	54.55%	45.70
	ACh(1*10 ⁻⁶ M)	10.207	5.102	5.892	9.902	1.701	5.314	ACh(1*10-6M)	56.79%	55.31%	52.58%	48.07%	87.52%	59.84%	60.02
$ACh(1*10^{-5}M)$ 8.251 3.264 5.327 6.542 3.955 4.199 $ACh(1*10^{-5}M)$ 65.07% 71.41% 57.13% 65.69% 70.97% 68.26% 66.42															
	ACh(1*10 ⁻⁵ M)	8.251	3.264	5.327	6.542	3.955	4.199	ACh(1*10 ⁻⁵ M)	65.07%	71.41%	57.13%	65.69%	70.97%	68.26%	66.42
			-11	Œ											
				Нi											
				$^{\rm H}$											
				111		and the same of									
				/ I		-									
						1									
			- La			/									
			EN EN			/									
			EN SE			/	un.	7.0							

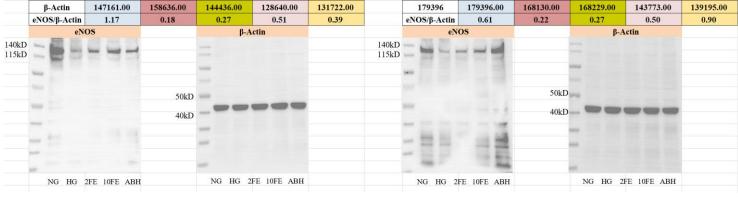
	Aorta	contra	ct valu	e(mN)						R	Lelaxati	on(%N	E)		
	ABH+ HG-1	ABH+ HG-2	ABH+ HG-3	ABH+ HG-4	ABH+ HG-5	ABH+ HG-6									
ACh(0M)	10.152	16.406	13.842	11.401	10.964	7.224			ABH+H G-1	ABH+H G-2	ABH+H G-3	ABH+H G-4	ABH+H G-5	ABH+H G-6	Mean
ACh(1*10 ⁻⁹ M)	9.825	16.007	13.153	10.924	10.122	6.635		ACh(1*10-9M)	3.22%	2.43%	4.98%	4.18%	7.68%	8.15%	5.11%
ACh(5*10 ⁻⁹ M)	9.719	15.821	13.017	10.658	9.907	5.711		ACh(5*10-9M)	4.27%	3.57%	5.96%	6.52%	9.64%	20.94%	8.48%
ACh(1*10 ⁻⁸ M)			12.115	10.519	9.259	5.872		ACh(1*10-8M)	9.95%	11.75%	12.48%	7.74%	15.55%	18.72%	12.70%
ACh(5*10 ⁻⁸ M)	8.108	11.301	11.593	9.267	8.221	4.501		ACh(5*10-8M)	20.13%	31.12%	16.25%	18.72%	25.02%	37.69%	24.82%
ACh(1*10 ⁻⁷ M)	5.517	8.056	7.251	7.629	6.046	4.023		ACh(1*10-7M)	45.66%	50.90%	47.62%	33.08%	44.86%	44.31%	44.40%
ACh(5*10 ⁻⁷ M)	5.003	4.821	4.941	4.519	4.005	2.657		ACh(5*10-7M)	50.72%	70.61%	64.30%	60.36%	63.47%	63.22%	62.12%
ACh(1*10-6M)	3.216	3.713	3.689	3.415	3.158	1.846		ACh(1*10-6M)	68.32%	77.37%	73.35%	70.05%	71.20%	74.45%	72.45%
ACh(5*10-6M)	2.305	2.833	2.773	2.317	2.441	1.003		ACh(5*10-6M)	77.30%	82.73%	79.97%	79.68%	77.74%	86.12%	80.59%
ACh(1*10 ⁻⁵ M)	1.977	2.275	1.982	1.806	2.501	0.931		ACh(1*10-5M)	80.53%	86.13%	85.68%	84.16%	77.19%	87.11%	83.47%
									-	-					
			ш				_			-	1				
			HI	Н					_						
		-		-11					h.						
					_J					~					
								44	**						

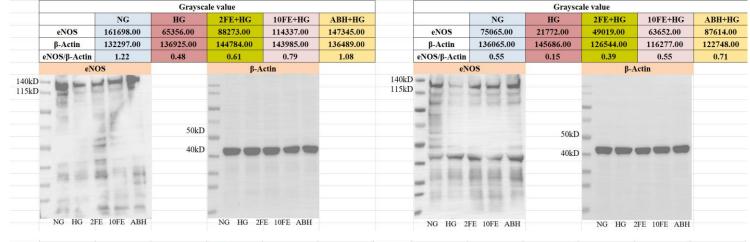

		Fig .6B	raw data	1	
		NO level (µ	ımol/g prot)	
	NG	HG	2FE+HG	10FE+HG	ABH+HG
	20. 166	12. 076	15. 337	16. 422	15. 968
	18. 019	9. 949	13.604	14. 928	16. 670
	18. 260	11.894	16. 748	20. 303	18. 446
	22. 368	11. 624	15. 208	13. 578	19. 326
	15. 163	12. 252	15. 820	17. 164	15. 643
	19. 623	11. 511	14. 878	15. 899	16. 776
Mean	18.93	11.55	15.27	16.38	17.14

			1	1	Fig .6C	rav	v dat	ี	1	1	<u> </u>	1
		Arg act	ivity/protei		rig .oc				Norma	lized to N	G	
	NG	HG	2FE+HG	10FE+HG	ABH+HG			NG	HG	2FE+HG	10FE+HG	ABH+HO
	0.081	0.165	0.119	0.109	0.084			93.86%	192.44%	138.79%	127.28%	97.68%
	0.083	0.148	0.110	0.106	0.094			96.81%	171.96%	127.56%	123.73%	109.01%
	0.090	0.187	0.094	0.114	0.087			104.63%	217.21%	109.08%	132.07%	101.17%
	0.088	0.177	0.096	0.094	0.109			102.79%	206.03%	111.86%	109.27%	127.23%
	0.079	0.176	0.106	0.097	0.080			92.24%	204.98%	123.01%	112.39%	92.74%
	0.094	0.157	0.112	0.110	0.102			109.66%	183.06%	130.54%	127.50%	118.30%
Mean	0.09	0.17	0.11	0.10	0.09		Mean	100.00%	195.95%	123.47%	122.04%	107.69%

						Protein con	centration (determination	1						
		icentration (luted by 12.		-	OD	Standard concentration (µg/mL)	300	y = 708.3x R ² = 0				Protein	concentratio	on(g/L)	
NG	HG	2FE+HG	10FE+HG	ABH+HG	0.100	0			To be a second		NG	HG	2FE+HG	10FE+HG	ABH+E
0.439	0.428	0.415	0.433	0.446	0.114	5	100				2.987	2.890	2.775	2.934	3.049
0.445	0.447	0.423	0.432	0.409	0.129	25					3.040	3.058	2.846	2.925	2.722
0.452	0.441	0.457	0.419	0.451	0.179	50	0	••			3.102	3.005	3.147	2.810	3.093
					0.275	125	0.00	0.10 0.20	0.30 0.	.40 0.50					
					0.455	250	-100								
		centration (luted by 12.		_	OD	Standard concentration (µg/mL)	300	y = 692.26x R ² = 0.				Protein	concentration	on(g/L)	
NG	HG	2FE+HG	10FE+HG	ABH+HG	0.090	0			To the second		NG	HG	2FE+HG	10FE+HG	ABH+H
0.437	0.433	0.455	0.434	0.438	0.106	5	100	3.5			2.954	2.919	3.110	2.928	2.963
0.444	0.459	0.429	0.427	0.445	0.130	25					3.015	3.144	2.885	2.868	3.023
0.461	0.432	0.418	0.451	0.415	0.174	50	0				3.162	2.911	2.790	3.075	2.764
					0.275	125	0.00	0.10 0.20	0.30 0.	.40 0.50					
					0.456	250	-100								
						Arg activity	determinat	ion							
	Arg	activity-OD	value							A	rg activity/pr	otein			
NG	HG			ABH+HG					NG	HG	2FE+HG	10FE+HG	ABH+HG		
0.241	0.478	0.331	0.321	0.256					0.081	0.165	0.119	0.109	0.084		
0.253	0.452	0.312	0.311	0.255					0.083	0.148	0.110	0.106	0.094		
0.279	0.561	0.295	0.319	0.269					0.090	0.187	0.094	0.114	0.087		
		activity-OD									rg activity/pr				
NG	HG			ABH+HG					NG	HG	2FE+HG	10FE+HG			
0.261	0.517	0.299	0.275	0.324					0.088	0.177	0.096	0.094	0.109		
	0.554	0.305	0.277	0.241					0.079	0.176	0.106	0.097	0.080		
0.239	0.458	0.313	0.337	0.281					0.094	0.157	0.112	0.110	0.102	l	

				5.	6D raw	uata					
	Aı	rg1/β-Actin valu	ıe					Normaliz	ed to NG		
NG	HG	2FE+HG	10FE+HG	ABH+HG			NG	HG	2FE+HG	10FE+HG	ABH+HG
0.45	0.95	0.08	0.20	0.07			145.96%	309.96%	27.67%	63.95%	22.46%
0.25	1.05	0.52	0.13	0.11			81.04%	342.11%	168.60%	43.60%	36.53%
0.20	0.47	0.23	0.20	0.21			66.27%	152.88%	75.29%	65.92%	69.14%
0.07	0.60	0.12	0.17	0.21			24.14%	196.76%	40.38%	54.32%	68.21%
0.53	1.15	0.07	0.22	0.36			172.79%	373.49%	22.60%	71.68%	116.41%
0.34	0.78	0.14	0.30	0.62			109.80%	255.42%	45.13%	99.03%	203.26%
0.31	0.83	0.19	0.20	0.26		Mean	100.00%	271.77%	63.28%	66.42%	86.00%
0 0 0 0 0	0.45 0.25 0.20 0.07 0.53 0.34	NG HG 0.45 0.95 0.25 1.05 0.20 0.47 0.07 0.60 0.53 1.15 0.34 0.78	NG HG 2FE+HG 0.45 0.95 0.08 0.25 1.05 0.52 0.20 0.47 0.23 0.07 0.60 0.12 0.53 1.15 0.07 0.34 0.78 0.14	NG HG 2FE+HG 10FE+HG 0.45 0.95 0.08 0.20 0.25 1.05 0.52 0.13 0.20 0.47 0.23 0.20 0.07 0.60 0.12 0.17 0.53 1.15 0.07 0.22 0.34 0.78 0.14 0.30	NG HG 2FE+HG 10FE+HG ABH+HG 0.45 0.95 0.08 0.20 0.07 0.25 1.05 0.52 0.13 0.11 0.20 0.47 0.23 0.20 0.21 0.07 0.60 0.12 0.17 0.21 0.53 1.15 0.07 0.22 0.36 0.34 0.78 0.14 0.30 0.62	NG HG 2FE+HG 10FE+HG ABH+HG 0.45 0.95 0.08 0.20 0.07 0.25 1.05 0.52 0.13 0.11 0.20 0.47 0.23 0.20 0.21 0.07 0.60 0.12 0.17 0.21 0.53 1.15 0.07 0.22 0.36 0.34 0.78 0.14 0.30 0.62	NG HG 2FE+HG 10FE+HG ABH+HG 0.45 0.95 0.08 0.20 0.07 0.25 1.05 0.52 0.13 0.11 0.20 0.47 0.23 0.20 0.21 0.07 0.60 0.12 0.17 0.21 0.53 1.15 0.07 0.22 0.36 0.34 0.78 0.14 0.30 0.62	NG HG 2FE+HG 10FE+HG ABH+HG NG 0.45 0.95 0.08 0.20 0.07 145.96% 0.25 1.05 0.52 0.13 0.11 81.04% 0.20 0.47 0.23 0.20 0.21 66.27% 0.07 0.60 0.12 0.17 0.21 24.14% 0.53 1.15 0.07 0.22 0.36 172.79% 0.34 0.78 0.14 0.30 0.62 109.80%	NG HG 2FE+HG 10FE+HG ABH+HG NG HG 0.45 0.95 0.08 0.20 0.07 145.96% 309.96% 0.25 1.05 0.52 0.13 0.11 81.04% 342.11% 0.20 0.47 0.23 0.20 0.21 66.27% 152.88% 0.07 0.60 0.12 0.17 0.21 24.14% 196.76% 0.53 1.15 0.07 0.22 0.36 172.79% 373.49% 0.34 0.78 0.14 0.30 0.62 109.80% 255.42%	NG HG 2FE+HG 10FE+HG ABH+HG NG HG 2FE+HG 0.45 0.95 0.08 0.20 0.07 145.96% 309.96% 27.67% 0.25 1.05 0.52 0.13 0.11 81.04% 342.11% 168.60% 0.20 0.47 0.23 0.20 0.21 66.27% 152.88% 75.29% 0.07 0.60 0.12 0.17 0.21 24.14% 196.76% 40.38% 0.53 1.15 0.07 0.22 0.36 172.79% 373.49% 22.60% 0.34 0.78 0.14 0.30 0.62 109.80% 255.42% 45.13%	NG HG 2FE+HG 10FE+HG ABH+HG NG HG 2FE+HG 10FE+HG 0.45 0.95 0.08 0.20 0.07 145.96% 309.96% 27.67% 63.95% 0.25 1.05 0.52 0.13 0.11 81.04% 342.11% 168.60% 43.60% 0.20 0.21 66.27% 152.88% 75.29% 65.92% 0.07 0.60 0.12 0.17 0.21 24.14% 196.76% 40.38% 54.32% 0.53 1.15 0.07 0.22 0.36 172.79% 373.49% 22.60% 71.68% 0.34 0.78 0.14 0.30 0.62 109.80% 255.42% 45.13% 99.03%




		Graysca	le value					Graysca	le value		
	NG	HG	2FE+HG	10FE+HG	ABH+HG		NG	HG	2FE+HG	10FE+HG	ABH+HG
Arg1	30176.00	71510.00	39277.00	31743.00	34847.00	Arg1	9547.00	85108.00	17943.00	22688.00	27073.00
β-Actin	148476.00	152530.00	170102.00	157032.00	164358.00	β-Actin	128967.00	141049.00	144892.00	136199.00	129417.00
Arg1/β-Actin	0.20	0.47	0.23	0.20	0.21	Arg1/β-Actin	0.07	0.60	0.12	0.17	0.21
Arg	g1		β-А	ctin		Ar	g1		β-А	ctin	
-						-			tions.		
-			-			-					
-			9000						NAME OF TAXABLE PARTY.		
						100					
***		50kD				-		50kD	-		
40kD		40kD				40kD		40kD			
30kD = ==================================	===		-			30kD	===				
-						-			-		
NG HG 21	FE 10FE ABH		NG HG	2FE 10FE ABH		NG HG 2	FE 10FE ABH		NG HG	2FE 10FE ABH	

			Graysca	ile value						Graysca	le value						
		NG	HG	2FE+HG	10FE+HG	ABH+HG			NG	HG	2FE+HG	10FE+HG	ABH+HG				
	Arg1	67135.00	133305.00	8861.00	28876.00	48061.00		Arg1	46599.00	90187.00	14575.00	30710.00	81460.00				
	β-Actin	126697.00	116384.00	127875.00	131365.00	134624.00		β-Actin	138384.00	115137.00	105309.00	101120.00	130684.00				
	Arg1/β-Actin	0.53	1.15	0.07	0.22	0.36		Arg1/β-Actin	0.34	0.78	0.14	0.30	0.62				
	Ar	g1		β-Α	ctin			A	rg1		β-Α	Actin					
	-			Name .							-						
								-			-						
_	_																
				THE STATE OF THE S													
			col D					-		50kD							
	_		50kD	The second secon							The second second						
40kD			40kD				40kD	-		40kD							
							30kD										
30kD				-			3010	- 22 60	-		-						
	_							-									
				-													
	-																
	NG HG	2FE 10FE ABH		NG HG 2	FE 10FE ABH			NG HG	FE 10FE ABH		NG HG	2FE 10FE ABH					

						Fig .6E	raw data					
			р-р38/	p38 value					Normalize	d to NG		
	N	G			0FE+HG	BH+HG		NG	HG	2FE+HG	10FE+HG	ABH+HC
	0.9			0.73	0.85	0.76		111.81%	128.90%	84.28%	98.65%	87.85%
	0.:			0.87	0.94	0.90		58.98%	110.69%	100.66%	108.87%	103.68%
	1.0			1.32	1.52	0.83		116.92%	180.72%	151.81%	175.28%	95.50%
	0.3			1.35 1.35	1.21	0.96 1.42		92.62%	164.02% 179.20%	155.66% 155.21%	139.47% 149.24%	110.90% 163.44%
	0.0			0.97	1.06	0.86		73.98%	158.73%	111.52%	122.16%	98.84%
Mean	0.	87	1.33	1.10	1.15	0.95	Mean	100.00%	153.71%	126.52%	132.28%	110.04%
			Graysca							ale value		
	•	NG	HG	2FE+HG	10FE+HG	ABH+HG	20	NG	HG	2FE+HG	10FE+HG	ABH+H0
p-p3		139906.00	169109.00	110770.00	131643.00	111349.00	p-p38	74635.00	135319.00	131179.00	131625.00	138042.0
p38 p-p38/		144396.00 0.97	151393.00 1.12	151673.00 0.73	153993.00 0.85	146261.00 0.76	p38 p-p38/p38	146030.00 0.51	141069.00 0.96	150383.00 0.87	139523.00 0.94	153648.0 0.90
p-p30/	/рзо p-p3		1.12		0.03	0.70		p-p38	0.90		38	0.90
	P P							, p.o		- Р		
-										100		
				1901			464			101		
-												
)kD							50LD		50kD			
AL			50kD				50kD		JUKD	100		
kD =		-	40kD				40kD		40kD			
										-		
100				-			1000		-	100		
100							100					
									-			
									-			
NG	HG 2	FE 10FE ABH		NG HG	2FE 10FE ABH	1	NG HG	2FE 10FE ABI	ī	NG HG	2FE 10FE ABH	
										110 110	1012 1011	
8			Graysca	le value	d .		8		Gravsc	ale value	1	
		NG	HG	2FE+HG	10FE+HG	ABH+HG		NG	HG	2FE+HG	10FE+HG	АВН+НО
р-р.	38	101556.00	150336.00	125935.00	151327.00	81077.00	р-р38	142999.00	142013.00	151579.00	125769.00	100437.00
р3		100235.00	95994.00	95727.00	99628.00	97966.00	p38	113268.00	99915.00	112371.00	104061.00	104510.00
р-р38	/p38	1.01	1.57	1.32	1.52	0.83	p-p38/p38	1.26	1.42	1.35	1.21	0.96
	р-р.	38		I	38			р-р38			38	
-				Mary						and and		
-				700			1000					
-				-								
				-			-					
				-								
0kD			50 k D				-		50kD			
			50kD 40kD				50k D			-		
0kD	_						-		50kD 40kD			
	-						50k D					
	-						50k D					
	-						50k D					
	-						50k D					
0kD	HG 22	FE 10FE ARH		NG HC	2FE 10FE ARH		50kD 40kD		40kD		2FE 10FF APU	
0kD	HG 21	FE 10FE ABH		NG HG	2FE 10FE ABH		50kD 40kD	2FE 10FE ABH	40kD		2FE 10FE ABH	
0kD	HG 21	FE 10FE ABH			2FE 10FE ABH		50kD 40kD		40kD		2FE 10FE ABH	
0kD	HG 2	FE 10FE ABH	40kD		2FE 10FE ABH	АВН+НС	50kD 40kD		40kD	NG HG	2FE 10FE ABH	
NG P-P-	38	NG 77134.00	Graysca HG 151493.00	le value 2FE+HG 134678.00	10FE+HG 127582.00	ABH+HG 141855.00	50kD 40kD	2FE 10FE ABH NG 72025.00	Graysc HG 141920.00	NG HG ale value 2FE+HG 96743.00	10FE+HG 117916.00	ABH+H0 96564.00
NG P-P:	38	NG 77134.00 96100.00	Graysca HG 151493.00 97556.00	le value 2FE+HG 134678.00 100132.00	10FE+HG 127582.00 98650.00	ABH+HG 141855.00 100158.00	50kD 40kD NG HG P-p38 p38	NG 72025.00 112343.00	Graysc HG 141920.00 103179.00	NG HG 2FE+HG 96743.00 100109.00	10FE+HG 117916.00 111384.00	ABH+H0 96564.00 112737.0
NG P-P-	38 8 8/p38	NG 77134.00 96100.00 0.80	Graysca HG 151493.00	le value 2FE+HG 134678.00 100132.00 1.35	10FE+HG 127582.00 98650.00 1.29	ABH+HG 141855.00	50kD 40kD NG HG P-p38 p38 p-p38/p38	NG 72025.00 112343.00 0.64	Graysc HG 141920.00	NG HG 2FE+HG 96743.00 100109.00 0.97	10FE+HG 117916.00 111384.00 1.06	ABH+H 96564.00
NG P-P:	38	NG 77134.00 96100.00 0.80	Graysca HG 151493.00 97556.00	le value 2FE+HG 134678.00 100132.00 1.35	10FE+HG 127582.00 98650.00	ABH+HG 141855.00 100158.00	50kD 40kD NG HG P-p38 p38 p-p38/p38	NG 72025.00 112343.00	Graysc HG 141920.00 103179.00	NG HG 2FE+HG 96743.00 100109.00 0.97	10FE+HG 117916.00 111384.00	ABH+H 96564.00 112737.0
NG P-p: p3: p-p38	38 8 8/p38	NG 77134.00 96100.00 0.80	Graysca HG 151493.00 97556.00	le value 2FE+HG 134678.00 100132.00 1.35	10FE+HG 127582.00 98650.00 1.29	ABH+HG 141855.00 100158.00	50kD 40kD NG HG P-p38 p38 p-p38/p38	NG 72025.00 112343.00 0.64	Graysc HG 141920.00 103179.00	NG HG ale value 2FE+HG 96743.00 100109.00 0.97	10FE+HG 117916.00 111384.00 1.06	ABH+H 96564.00 112737.0
NG P-P:	38 8 8/p38	NG 77134.00 96100.00 0.80	Graysca HG 151493.00 97556.00	le value 2FE+HG 134678.00 100132.00 1.35	10FE+HG 127582.00 98650.00 1.29	ABH+HG 141855.00 100158.00	50kD 40kD NG HG P-p38 p38 p-p38/p38	NG 72025.00 112343.00 0.64	Graysc HG 141920.00 103179.00	NG HG 2FE+HG 96743.00 100109.00 0.97	10FE+HG 117916.00 111384.00 1.06	ABH+H 96564.00 112737.0
NG P-p: p3: p-p38	38 8 8/p38	NG 77134.00 96100.00 0.80	Graysca HG 151493.00 97556.00	le value 2FE+HG 134678.00 100132.00 1.35	10FE+HG 127582.00 98650.00 1.29	ABH+HG 141855.00 100158.00	50kD 40kD NG HG P-p38 p38 p-p38/p38	NG 72025.00 112343.00 0.64	Graysc HG 141920.00 103179.00	NG HG ale value 2FE+HG 96743.00 100109.00 0.97	10FE+HG 117916.00 111384.00 1.06	ABH+H 96564.00 112737.0
NG P-p: p3: p-p38	38 8 8/p38	NG 77134.00 96100.00 0.80	Graysca HG 151493.00 97556.00	2FE+HG 134678.00 100132.00 1.35	10FE+HG 127582.00 98650.00 1.29	ABH+HG 141855.00 100158.00	50kD 40kD NG HG P-p38 p38 p-p38/p38	NG 72025.00 112343.00 0.64	Graysc HG 141920.00 103179.00	NG HG 2FE+HG 96743.00 100109.00 0.97	10FE+HG 117916.00 111384.00 1.06	ABH+H 96564.00 112737.0
NG P-p: p3: p-p38	38 8 8/p38	NG 77134.00 96100.00 0.80	Graysca HG 151493.00 97556.00 1.55	2FE+HG 134678.00 100132.00 1.35	10FE+HG 127582.00 98650.00 1.29	ABH+HG 141855.00 100158.00	50kD 40kD NG HG P-p38 p38 p-p38/p38	NG 72025.00 112343.00 0.64	Graysc HG 141920.00 103179.00 1.38	NG HG ale value 2FE+HG 96743.00 100109.00 0.97	10FE+HG 117916.00 111384.00 1.06	ABH+H 96564.00 112737.0
NG P-p: p3: p-p38	38 8 8/p38	NG 77134.00 96100.00 0.80	Graysca HG 151493.00 97556.00	le value 2FE+HG 134678.00 100132.00 1.35	10FE+HG 127582.00 98650.00 1.29	ABH+HG 141855.00 100158.00	50kD 40kD NG HG P-p38 p38 p-p38/p38	NG 72025.00 112343.00 0.64	Graysc HG 141920.00 103179.00	NG HG ale value 2FE+HG 96743.00 100109.00 0.97	10FE+HG 117916.00 111384.00 1.06	ABH+H 96564.00 112737.0
NG P-p: p3: p-p38	38 8 8/p38	NG 77134.00 96100.00 0.80	Graysca HG 151493.00 97556.00 1.55	2FE+HG 134678.00 100132.00 1.35	10FE+HG 127582.00 98650.00 1.29	ABH+HG 141855.00 100158.00	50kD 40kD NG HG P-p38 p38 p-p38/p38	NG 72025.00 112343.00 0.64	Graysc HG 141920.00 103179.00 1.38	NG HG ale value 2FE+HG 96743.00 100109.00 0.97	10FE+HG 117916.00 111384.00 1.06	ABH+H 96564.00 112737.0
NG P-p: p3: p-p38	38 8 8/p38	NG 77134.00 96100.00 0.80	Graysca HG 151493.00 97556.00 1.55	le value 2FE+HG 134678.00 100132.00 1.35	10FE+HG 127582.00 98650.00 1.29	ABH+HG 141855.00 100158.00	50kD 40kD NG HG P-p38 p38 p-p38/p38	NG 72025.00 112343.00 0.64	Graysc HG 141920.00 103179.00 1.38	NG HG ale value 2FE+HG 96743.00 100109.00 0.97	10FE+HG 117916.00 111384.00 1.06	ABH+H 96564.00 112737.0
NG P-p: p3: p-p38	38 8 8/p38	NG 77134.00 96100.00 0.80	Graysca HG 151493.00 97556.00 1.55	le value 2FE+HG 134678.00 100132.00 1.35	10FE+HG 127582.00 98650.00 1.29	ABH+HG 141855.00 100158.00	50kD 40kD NG HG P-p38 p38 p-p38/p38	NG 72025.00 112343.00 0.64	Graysc HG 141920.00 103179.00 1.38	NG HG ale value 2FE+HG 96743.00 100109.00 0.97	10FE+HG 117916.00 111384.00 1.06	ABH+H 96564.00 112737.0
NG P-p: p3: p-p38 kD	38 8 8/p38	NG 77134.00 96100.00 0.80	Graysca HG 151493.00 97556.00 1.55	le value 2FE+HG 134678.00 100132.00 1.35	10FE+HG 127582.00 98650.00 1.29	ABH+HG 141855.00 100158.00	50kD 40kD NG HG P-p38 p38 p-p38/p38	NG 72025.00 112343.00 0.64	Graysc HG 141920.00 103179.00 1.38	NG HG ale value 2FE+HG 96743.00 100109.00 0.97	10FE+HG 117916.00 111384.00 1.06	ABH+H 96564.00 112737.0
NG P-p: p3: p-p38 kD	38 8 8/p38	NG 77134.00 96100.00 0.80	Graysca HG 151493.00 97556.00 1.55	le value 2FE+HG 134678.00 100132.00 1.35	10FE+HG 127582.00 98650.00 1.29	ABH+HG 141855.00 100158.00	50kD 40kD NG HG P-p38 p38 p-p38/p38	NG 72025.00 112343.00 0.64	Graysc HG 141920.00 103179.00 1.38	NG HG ale value 2FE+HG 96743.00 100109.00 0.97	10FE+HG 117916.00 111384.00 1.06	ABH+H 96564.00 112737.0

						Fig.	F raw d	ata					
			el	NOS/β-Actin				Normalized to NG					
	NG		HG	2FE+HG	10FE+HG	ABH+HG			NG	HG	2FE+HG	10FE+HG	ABH+H
	1.17	(0.18	0.27	0.51	0.39			156.56%	24.81%	36.12%	68.13%	52.37%
	0.61	(0.22	0.27	0.50	0.90			82.17%	30.02%	36.57%	67.60%	120.189
	1.22	(0.48	0.61	0.79	1.08			164.08%	64.08%	81.85%	106.60%	144.929
	0.55	(0.15	0.39	0.55	0.71			74.06%	20.06%	52.00%	73.49%	95.82%
	0.48	(0.42	0.85	0.62	0.96			64.69%	55.92%	114.52%	83.59%	129.479
	0.44	(0.19	0.65	0.54	0.54			58.43%	26.18%	87.44%	71.95%	72.26%
Iean	0.74	(0.27	0.51	0.59	0.76		Mean	100.00%	36.84%	68.08%	78.56%	102.50%
			Grays	scale value						Graysc	ale value		
	NG		HG	2FE+H0	10FE+H	G ABH+HG			NG	HG	2FE+HG	10FE+HG	ABH+H
eNOS	171626	6.00	29316.00	38862.0	65284.00	51384.00		109809	109809.00	37593.00	45832.00	72394.00	124615.0
β-Acti	n 147161	.00	158636.00	144436.0	0 128640.0	0 131722.00		179396	179396.00	168130.00	168229.00	143773.00	139195.
eNOS/β-A	Actin 1.17		0.18	0.27	0.51	0.39		eNOS/β-Actin	0.61	0.22	0.27	0.50	0.90
eNOS					β-Actin			eN	os		B_A	Actin	

			Graysca	ile value						Graysca	le value		
		NG	HG	2FE+HG	10FE+HG	ABH+HG			NG	HG	2FE+HG	10FE+HG	ABH+HG
	eNOS	67820.00	61117.00	114463.00	89649.00	134011.00		eNOS	61991.00	27619.00	97738.00	77629.00	80352.00
	β-Actin	140731.00	146722.00	134178.00	143972.00	138955.00		β-Actin	142436.00	141643.00	150062.00	144836.00	149276.00
	eNOS/β-Actin	0.48	0.42	0.85	0.62	0.96		eNOS/β-Actin	0.44	0.19	0.65	0.54	0.54
	eN	os		β-А	ctin			eNe	os		β-А	ctin	
140kD 115kD		MERCHAN AND	50kD 40kD				140kD 115kD		T T T T T T T T T T T T T T T T T T T	50kD 40kD	•••		
	NG HG 2	FE 10FE ABH		NG HG 2	FE 10FE ABH			NG HG 2	FE 10FE ABH		NG HG	2FE 10FE ABH	

				S1A raw d				
		ctin value					zed to NG	
	5.5mM	30mM	50mM			5.5mM	30mM	50mM
	0.20	0.76	0.87			41.88%	159.16%	182.20%
	0.62	1.19	1.21			129.84%	249.21%	253.40%
	0.59 0.50	1.66 1.71	1.73 1.75			123.56% 104.71%	347.64% 358.12%	362.30% 366.49%
Mean	0.30	1.33	1.73		Mean	100.00%	278.53%	291.10%
Mean	0.40	1.33	1.37		мен	100.00 /0	278.3370	291.10 /0
	Crayso	ale value				Gravee	ale value	
	5.5mM	30mM	50mM			5.5mM	30mM	50mM
A1					A 1			
Argl	35122.00	147008.00	151981.00		Argl	135344.00	270073.00	225019.00
β-Actin	178944.00	192538.00	175606.00		β-Actin	218443.00	227084.00	185956.00
Arg1/β-Actin	0.20	0.76	0.87		Arg1/β-Actin	0.62	1.19	1.21
Arg	gl	β-A	Actin		Arg	gl	β-A	ctin
-	=	50kD 40kD			= = =	40kD 30kD		
5.5mM_30mM	50mM	40kD	nM 30mM 50mN	5.1	5mM 30mM 50m	40kD		mM 50mM
5.5mM 30mM	50mM	40kD	nM 30mM 50mN	1 5.	5mM 30mM 50ml	40kD		mM 50mM
		40kD	Grayscale value			40kD		mM 50mM
	5.5mM	5.5mM	Grayscale value	9 30mM	50mM	40kD 30kD M 50mM		mM 50mM
		40kD	Grayscale value	e		40kD 30kD		mM 50mM
5.5mM 30mM	5.5mM	5.5mM	Grayscale value	9 30mM	50mM	40kD 30kD M 50mM		mM 50mM
5.5mM 30mM Argl β-Actin	5.5mM 74806.00	5.5mM 50228.00	Grayscale value 30mM 175540.00	30mM 152702.00	50mM 170391.00	40kD 30kD M 50mM 141805.00		mM 50mM
5.5mM 30mM Argl β-Actin	5.5mM 74806.00 125924.00 0.59	5.5mM 50228.00 100638.00	Grayscale value 30mM 175540.00 105889.00	30mM 152702.00 89118.00	50mM 170391.00 98666.00 1.73 β-Ac	40kD 30kD M 50mM 141805.00 80905.00 1.75		mM 50mM
5.5mM 30mM Argl β-Actin Arg1/β-Actin	5.5mM 74806.00 125924.00 0.59	5.5mM 50228.00 100638.00	Grayscale value 30mM 175540.00 105889.00	30mM 152702.00 89118.00	50mM 170391.00 98666.00 1.73 β-Ac	40kD 30kD M 50mM 141805.00 80905.00		mM 50mM
5.5mM 30mM Arg1 β-Actin Arg1/β-Actin Arg	5.5mM 74806.00 125924.00 0.59	5.5mM 50228.00 100638.00	Grayscale value 30mM 175540.00 105889.00	30mM 152702.00 89118.00 1.71	50mM 170391.00 98666.00 1.73 β-Ac	40kD 30kD M 50mM 141805.00 80905.00 1.75		mM 50mM
5.5mM 30mM Arg1 β-Actin Arg1/β-Actin Arg	5.5mM 74806.00 125924.00 0.59	5.5mM 50228.00 100638.00	Grayscale value 30mM 175540.00 105889.00	30mM 152702.00 89118.00 1.71	50mM 170391.00 98666.00 1.73 β-Ac	40kD 30kD M 50mM 141805.00 80905.00 1.75		mM 50mM
5.5mM 30mM Arg1 β-Actin Arg1/β-Actin Arg	5.5mM 74806.00 125924.00 0.59	5.5mM 50228.00 100638.00	Grayscale value 30mM 175540.00 105889.00	30mM 152702.00 89118.00 1.71	50mM 170391.00 98666.00 1.73 β-Ac	40kD 30kD M 50mM 141805.00 80905.00 1.75		mM 50mM
5.5mM 30mM Arg1 β-Actin Arg1/β-Actin Arg	5.5mM 74806.00 125924.00 0.59	5.5mM 50228.00 100638.00	Grayscale value 30mM 175540.00 105889.00	30mM 152702.00 89118.00 1.71	50mM 170391.00 98666.00 1.73 β-Ac	40kD 30kD M 50mM 141805.00 80905.00 1.75		mM 50mM
5.5mM 30mM Arg1 β-Actin Arg1/β-Actin Arg	5.5mM 74806.00 125924.00 0.59	5.5mM 50228.00 100638.00	Grayscale value 30mM 175540.00 105889.00	30mM 152702.00 89118.00 1.71	50mM 170391.00 98666.00 1.73 β-Ac	40kD 30kD M 50mM 141805.00 80905.00 1.75		mM 50mM
5.5mM 30mM Arg1 β-Actin Arg1/β-Actin	5.5mM 74806.00 125924.00 0.59	5.5mM 50228.00 100638.00	Grayscale value 30mM 175540.00 105889.00	30mM 152702.00 89118.00 1.71	50mM 170391.00 98666.00 1.73 β-Ac	40kD 30kD M 50mM 141805.00 80905.00 1.75		mM 50mM
5.5mM 30mM Arg1 β-Actin Arg1/β-Actin Arg	5.5mM 74806.00 125924.00 0.59	5.5mM 50228.00 100638.00	Grayscale value 30mM 175540.00 105889.00	30mM 152702.00 89118.00 1.71	50mM 170391.00 98666.00 1.73 β-Ac	40kD 30kD M 50mM 141805.00 80905.00 1.75		mM 50mM

Arg activity/protein Normalized to NG
5.5mM 30mM 50mM 5.5mM 30mM 50mM
0.082 0.175 0.171 96.17% 206.57% 201.34%
0.093 0.140 0.197 109.56% 165.15% 231.51%
0.088 0.225 0.194 103.14% 265.10% 228.05%
0.085 0.126 0.178 100.16% 148.71% 209.56%
0.08 0.17 0.182 90.96% 202.64% 214.54%
Mean 0.08 0.17 0.18 Mean 100.00% 197.63% 217.00%

Mean	0.08	0.17	0.18		Mean	100.00%	197.63%	217.00%				
					Protein	n concentra	tion determin	ation				
Protein	concentra	tion OD			Standard	300						
	value—			OD	concentration		y = 724.35x - 63.	243	Protein	concentrat	tion(g/L)	
Sample diluted by 12.5 times				(µg/mL)	200	$R^2 = 0.9989$	ALERO PORT					
5.5mM	30mM	50mM		0.088	0	200		h.v.e.e.e.	5.5mM	30mM	50mM	
0.432	0.509	0.546		0.096	5	100			2.925	3.607	3.935	
0.553	0.422	0.530		0.122	25	100	24.5.5		3.997	2.837	3.793	
0.545	0.401	0.417		0.159	50				3.926	2.651	2.792	
0.533	0.461	0.448		0.251	125	0	0.40	.30 0.40 0.50	3.819	3.182	3.067	
0.486		0.479		0.436	250	0.00	0.10 0.20 0	.30 0.40 0.50	3.403	3.253	3.341	
			Arg activit	y determin	ation							
Arg a	ctivity-OD	value		Ai	rg activity/prot	tein						
5.5mM	30mM	50mM		5.5mM	30mM	50mM						
0.239	0.633	0.673		0.082	0.175	0.171						
0.372	0.398	0.746		0.093	0.140	0.197						
0.344	0.597	0.541		0.088	0.225	0.194						
0.325	0.402	0.546		0.085	0.126	0.178						
0.263	0.560	0.609		0.077	0.172	0.182						