Electronic Supplementary Material (ESI) for Food & Function. This journal is © The Royal Society of Chemistry 2024

Differences in arterial stiffness and atherosclerosis between vegetarian and omnivorous diets. A systematic review and meta-analysis.

ESI Table 1. Search strategy for the MEDLINE database.

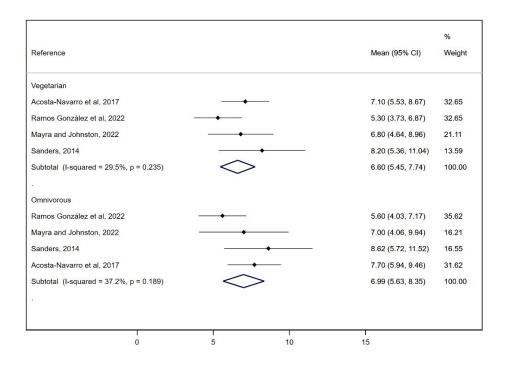
Adults OR Adult population OR Adult subjects	AND	Vegetarian OR Vegetarian diet	AND	Omnivorous OR Omnivorous diet	AND	Arterial stiffness OR PWV OR Pulse wave velocity OR Atherosclerosis OR IMT OR Intima media thickness
--	-----	-------------------------------	-----	--	-----	--

ESI Table 2. Quality assessment with the tool for observational cohort and cross-sectional studies of the National Heart, Lung and Blood Institute for carotid to femoral pulse wave velocity.

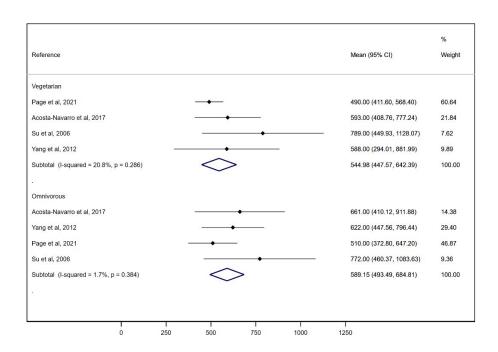
Reference	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Quality
Sanders, 2014 ²⁵	N	N	NR	NR	N	NA	NA	N	N	N	Y	NA	NA	N	LOW
Acosta-Navarro et al, 2017 ²⁶	Y	Y	N	Y	N	NA	NA	N	N	N	Y	NA	NA	Y	FAIR
Cinegaglia et al, 2020 ²⁸	Y	Y	N	Y	N	NA	NA	N	N	N	Y	NA	NA	Y	FAIR
Antoniazzi et al, 2022 ³⁰	Y	Y	N	Y	N	NA	NA	N	Y	N	Y	NA	NA	N	FAIR
Mayra and Johnston, 2022 ³¹	Y	Y	NR	Y	N	NA	NA	N	Y	N	Y	NA	NA	N	FAIR
Ramos González et al, 2022 ³²	Y	Y	NR	Y	N	NA	NA	N	Y	N	Y	NA	NA	N	FAIR

^{1.} Was the research question or objective in this paper clearly stated?; 2. Was the study population clearly specified and defined?; 3. Was the participation rate of eligible persons at least 50%?; 4. Were all the subjects selected or recruited from the same or similar populations (including the same time period)? Were inclusion and exclusion criteria for being in the study prespecified and applied uniformly to all participants?; 5. Was a sample size justification, power description, or variance and effect estimates provided?; 6. For the analyses in this paper, were the exposure(s) of interest measured prior to the outcome(s) being measured?; 7. Was the timeframe sufficient so that one could reasonably expect to see an association between exposure and outcome if it existed?; 8. For exposures that can vary in amount or level, did the study examine different levels of the exposure as related to the outcome (e.g., categories of exposure, or exposure measured as continuous variable)?; 9. Were the exposure measures (independent variables) clearly defined, valid, reliable, and implemented consistently across all study participants?; 10. Was the exposure(s) assessed more than once over time?; 11. Were the outcome measures (dependent variables) clearly defined, valid, reliable, and implemented consistently across all study participants?; 12. Were the outcome assessors blinded to the exposure status of participants?; 13. Was loss to follow-up after baseline 20% or less?; 14. Were key potential confounding variables measured and adjusted statistically for their impact on the relationship between exposure(s) and outcome(s)?; N: no; NA: not applicable; NR: not reported; Y: yes.

ESI Table 3. Quality assessment with the tool for observational cohort and cross-sectional studies of the National Heart, Lung and Blood Institute for carotid intima media thickness.


Reference	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Quality
Su et al, 2006 ²³	N	Y	N	Y	N	NA	NA	N	N	N	Y	NA	NA	Y	FAIR
Yang et al, 2012 ²⁴	Y	Y	NR	Y	N	NA	NA	N	Y	N	Y	NA	NA	N	FAIR
Acosta-Navarro et al, 2017 ²⁶	Y	Y	N	Y	N	NA	NA	N	N	N	Y	NA	NA	Y	FAIR
Cinegaglia et al, 2019 ²⁷	Y	Y	N	Y	N	NA	NA	N	N	N	Y	NA	NA	N	FAIR
Cinegaglia et al, 2020 ²⁸	Y	Y	N	Y	N	NA	NA	N	N	N	Y	NA	NA	Y	FAIR
Page et al, 2021 ²⁹	Y	Y	NR	Y	N	NA	NA	N	Y	N	Y	NA	NA	N	FAIR
Antoniazzi et al, 2022 ³⁰	Y	Y	N	Y	N	NA	NA	N	Y	N	Y	NA	NA	N	FAIR

^{1.} Was the research question or objective in this paper clearly stated?; 2. Was the study population clearly specified and defined?; 3. Was the participation rate of eligible persons at least 50%?; 4. Were all the subjects selected or recruited from the same or similar populations (including the same time period)? Were inclusion and exclusion criteria for being in the study prespecified and applied uniformly to all participants?; 5. Was a sample size justification, power description, or variance and effect estimates provided?; 6. For the analyses in this paper, were the exposure(s) of interest measured prior to the outcome(s) being measured?; 7. Was the timeframe sufficient so that one could reasonably expect to see an association between exposure and outcome if it existed?; 8. For exposures that can vary in amount or level, did the study examine different levels of the exposure as related to the outcome (e.g., categories of exposure, or exposure measured as continuous variable)?; 9. Were the exposure measures (independent variables) clearly defined, valid, reliable, and implemented consistently across all study participants?; 10. Was the exposure(s) assessed more than once over time?; 11. Were the outcome measures (dependent variables) clearly defined, valid, reliable, and implemented consistently across all study participants?; 12. Were the outcome assessors blinded to the exposure status of participants?; 13. Was loss to follow-up after baseline 20% or less?; 14. Were key potential confounding variables measured and adjusted statistically for their impact on the relationship between exposure(s) and outcome(s)?; N: no; NA: not applicable; NR: not reported; Y: ves.


ESI Table 4. Meta-regression according to mean age, percentage of female and body mass index for carotid to femoral pulse wave velocity (cf-PWv) and carotid intima media thickness (c-IMT).

	Coefficient	95% CIs	P value		
c-IMT					
Vegetarian diet					
Mean age	6.615	-8.844, 22.074	0.207		
Percentage of female	2.785	-4.815, 10.386	0.256		
Body mass index	-167.619	-590.567, 255.329	0.230		
Total cholesterol	6.047	-106.371, 118.467	0.618		
Low density lipoprotein	2.686	-224.357, 229.729	0.905		
High density lipoprotein	15.300	-182.389, 212.989	0.505		
Triglycerides	-1.129	-30.972, 28.713	0.715		
Omnivorous diet					
Mean age	6.773	-10.182, 23.728	0.228		
Percentage of female	2.023	-5.155, 9.202	0.349		
Body mass index	18.416	-195.217, 232.049	0.1746		
Total cholesterol	8.007	-118.386, 134.401	0.569		
Low density lipoprotein	5.898	-234.924, 246.721	0.808		
High density lipoprotein	6.908	-110.537, 124.352	0.591		
Triglycerides	-0.086	-21.972, 21.798	0.968		
Vegetarian vs Omnivorous diets		, ,			
Mean age	-0.448	-6.141, 7.037	0.798		
Percentage of female	0.549	-0.960, 2.059	0.258		
Body mass index	-32-607	-99.538, 34.324	0.171		
Total cholesterol	1.962	-40.142, 44.067	0.660		
Low density lipoprotein	-2.162	-108.644, 104.320	0.839		
High density lipoprotein	3.899	-27.771, 35.570	0.362		
Triglycerides	-0.703	-7.928, 6.521	0.433		
	*******		******		
cf-PWv					
Vegetarian diet					
Mean age	0.102	-0.132, 0.336	0.202		
Percentage of female	-0.019	-0.069, 0.031	0.242		
Body mass index	1.207	-2.221, 4.634	0.269		
Total cholesterol	0.106	-0.710, 0.921	0.347		
Low density lipoprotein	0.079	-0.525, 0.684	0.345		
High density lipoprotein	-0.155	-1.507, 1.197	0.3383		
Triglycerides	0.076	-0.565, 0.718	0.372		
Omnivores diet		,			
Mean age	0.114	-0.121, 0.348	0.172		
Percentage of female	-0.029	-0.071, 0.013	0.130		
Body mass index	0.575	-0.692, 1.843	0.190		
Total cholesterol	0.064	-0.409, 0.536	0.336		
Low density lipoprotein	0.063	-0.391, 0.517	0.329		
High density lipoprotein	-0.099	-1.125, 0.926	0.435		
Triglycerides	0.029	-0.199, 0.259	0.351		
Vegetarian vs Omnivorous diets		,			
Mean age	-0.012	-0.064, 0.041	0.447		
Percentage of female	0.003	-0.010, 0.017	0.420		
Body mass index	-0.097	-0.519, 0.325	0.426		
Total cholesterol	-0.010	-0.158, 0.138	0.549		
Low density lipoprotein	-0.010	-0.135, 0.116	0.510		
High density lipoprotein	0.026	-0.239, 0.291	0.433		
6 J F - F	-0.007	-0.086, 0.071	0.442		

ESI Figure 1. Comparisons of mean carotid to femoral pulse wave velocity (cf-PWv) between vegetarian and omnivorous diets.

ESI Figure 2. Comparisons of mean carotid intima media thickness (c-IMT) between vegetarian and omnivorous diets.

