Supplementary materials

Title: Inhibition of α -glucosidase activity and intestinal glucose transport to assess *in vivo* anti-hyperglycemia potential of dodecyl-acylated phlorizin and polydatin derivatives

Authors: Zhengming Xu, ^a Kseniya Hileuskaya, ^c Aliaksandr Kraskouski, ^c Yujiao Yang, ^a Zhe Huang, ^a and Zhengang Zhao ^{a, b, *}

Affiliations:

^a School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China;

^b Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.

^c Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, Minsk, Belarus

Corresponding Author:

* Zhengang Zhao, Tel: (+86)-20-87113668; E-mail: <u>fezzg@scut.edu.cn</u>, No.381 Wushan Road, South China University of Technology, Guangzhou 510640, China. Table S1: Sequences of the primers used for RT-qPCR.

Table S2 Effect of dodecyl phlorizin and dodecyl polydatin on the secondary structure of α-glucosidase.

Table S3 Information on catalytic and allosteric sites of α -glucosidase molecule and docking box.

Table S4 Binding energy, inhibition constant and hydrogen bonds of substrate and inhibitors with catalytic and allosteric sites.

Structure information:

Figure S1: MS and MS/MS spectra of dodecyl phlorizin;

Figure S2: MS and MS/MS spectra of dodecyl polydatin;

Figure S3: ¹H NMR of phlorizin and dodecyl phlorizin;

Figure S4: ¹³C NMR of phlorizin and dodecyl phlorizin;

Figure S5: ¹H NMR of polydatin and dodecyl polydatin;

Figure S6: ¹³C NMR of polydatin and dodecyl polydatin.

Gene	Direction	Primer (5'-3')		
β-Actin	Forward	TAGTTGCGTTACACCCTTTCTTG		
	Reverse	TCACCTTCACCGTTCCAGTTT		
SGLT1	Forward	TTCACGAAGTGGGAGGCTAT		
	Reverse	GAGTCGGCCCTTGGAGTGTA		
GLUT2	Forward	ATGAGTGGGATGTTTGTTTGTG		
	Reverse	AACTCAGCCACCATGAACCA		
РКА	Forward	CCATCAAGGCTATATCCAGGTC		
	Reverse	TGCCTTATTGTAGCCCTTGC		
Na ⁺ /K+ ATPase	Forward	TTGGGGTTGCTATGGGGATT		
	Reverse	TTGGGGTTGCTATGGGGATT		

Table S1 Sequences of the primers used for RT-qPCR

		-			
Compound	Concentration	α-Helix	β-Sheet	β-Turn	Random coil
	(µM)	(%)	(%)	(%)	(%)
	0	43.8	13.9	16.7	25.4
D 1 1 11 · ·	50	39.6	17.7	18.6	24.1
Dodecyl phlorizin	75	32.7	21.7	18.4	27.2
	90	28.0	24.6	18.0	29.4
	0	43.8	13.9	16.7	25.4
	50	40.2	17.9	18.8	23.2
Dodecyl polydatin	70	37.4	19.0	18.6	24.9
	90	30.7	22.7	18.2	28.4

Table S2 Effect of dodecyl phlorizin and dodecyl polydatin on the secondary structure

of α -glucosidase

		-			
Sites	Box coordinate	Box size	Volum	Surface	Depth
	(X, Y, Z)	(X, Y, Z)	e [Å ³]	[Å ²]	[Å]
Catalytic site 1	20.04, -6.90, 21.77	40, 40, 40	191.49	265.77	10.91
Allosteric site 2	16.11, 11.76, 32.79	60, 40, 56	165.45	371.65	10.31
Allosteric site 3	12.86, -22.07, 14.89	50, 50, 60	156.57	305.71	8.62
Allosteric site 4	13.66, -11.01, 17.57	40, 40, 40	141.82	319.39	7.29
Allosteric site 5	14.09, 1.86, 0.05	50, 46, 48	69.63	120.93	5.43

Table S3 Information on catalytic and allosteric sites of α -glucosidase molecule and

docking box

Compound	Site	Binding energy (kcal/mol)	Inhibition constant	Hydrogen bond
pNPG	1	-6.63	13.91 µM	Asp69, asp215, glu277, arg315, asp352, gln353
Acarbose	1	-4.29	714.62 µM	Asp69, tyr158, arg213, asp215, glu277, gln279, arg315,
				asp352, arg442
Phlorizin	1	-7.46	3.4 µM	Asp69, his112, gln182, glu277, arg315, asp352, glu411, asn415
Polydatin	1	-7.32	4.32 μΜ	Arg213, asp215, glu277, asn350, asp352, glu411
Dodecyl phlorizin	1	-1.8	47.78 mM	Tyr158, glu277, gln279, his280, asp352, glu411, arg442
	2	-7.27	4.65 μΜ	Asn259, arg270, ser291, his295, glu296
	3	-5.38	113.46 µM	Asn235, asn317, asn415, glu429
	4	-7.29	4.54 μΜ	Asp242, gln279, glu411, asn415
	5	-4.63	2.68 mM	Phe321, thr358, asp362, ser545
Dodecyl polydatin	1	-5.17	162.9 μM	Asp69, gln279, his280, arg315, glu411

Table S4 Binding energy, inhibition constant and hydrogen bonds of substrate and inhibitors with catalytic and allosteric sites

2	-6.74	11.51 μM	Asn259, arg263, arg270, ile272, his295, asp341
3	-6.07	35.25 µM	Gly161, asp233, ser311, asn317, glu422
4	-8.60	497.09 nM	Lys156, asp242, asp307, thr310, leu313, arg315, asn415
5	-6.0	40.24 µM	Leu323, phe360, asp362, lys523

Figure S1 MS and MS/MS spectra of dodecyl phlorizin

Figure S2 MS and MS/MS spectra of dodecyl polydatin

Figure S3b ¹H NMR of dodecyl phlorizin

Figure S4b ¹³C NMR of dodecyl phlorizin

Figure S5b ¹H NMR of dodecyl polydatin

. الإإلا , H HL

Ħ

Ψ 2.15 ≠ 1.99 16.22 16.22 16.22 2000000 1000000 0

-1000000

41

 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$

f1 (ppm)

16 15 14 13 12 11 10

Figure S6b ¹³C NMR of dodecyl polydatin