Orally dual-targeted astaxanthin nanoparticles as the novel dietary supplement for alleviating hepatocyte oxidative stress

Xiumin Zhangacd, Mahwish Shaukatb, Ronggang Liuacd, Liyang Pengacd, Yuxiao Wangacd, Wentao Suacd, Yukun Songacd*, Mingqian Tanacd

aAcademy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China
bDepartment of Food Sciences, Cholistan University of Veterinary & Animal Sciences, Bahawalpur 63100, Pakistan
cState Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
dNational Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China

* To the correspondence
Name: Yukun Song
E-mail: songyukun@dlpu.edu.cn
Correspondence address: Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China
Tel &Fax: +86-0411-86318657
Figure S1. Browning index of WPI-GOS at wavelength 420 nm and absorbance of intermediates at 294 nm.
Figure S2 Circular dichroism spectra of WPI-GOS at different time.
Figure S3 1H NMR spectra of TPP, WPI-GOS and TPP-WPI-GOS
Fig. S4 SEM images of AXT@WPI-GOS and AXT@TPP-WPI-GOS nanoparticles. Scale bars were 500 nm.