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19 1. Supplementary materials and methods

20 1.1 Total phenolic content measurement

21 Total phenolic content was measured in line with the Folin-Ciocalteu method with 

22 modification.1 In brief, 500 μL of Folin-Ciocalteu reagent (10%, v/v) was added to 100 

23 μL of sample supernatant and then stood for 5 min. Afterward, 400 μL of Na2CO3 (75 

24 g/L, w/v) was added to the mixture and stood for another 30 min avoiding light. The 

25 absorbance value of the mixture at 765 nm was detected by the microplate reader 

26 (Varioskan LUX, Massachusetts, USA). Total phenolic content was calculated from the 

27 gallic acid standard curve and presented as milligrams of gallic acid equivalent (GAE) 

28 per milliliter of LFT (mg GAE/mL).

29 1.2 Total flavonoid content measurement

30 Total flavonoid content was determined following a previous study.2 Briefly, 100 

31 μL of sample supernatant, 50 μL of NaNO2 (50 g/L, w/v), and 300 μL of distilled water 

32 were mixed and stood for 5 min. Subsequently, 100 μL of AlCl3 (100 g/L, w/v) was 

33 added to the mixture followed by vortexing and standing for 5 min. Finally, 200 μL of 

34 NaOH (2 mol/L) was added to the mixture to react for 5 min and the absorbance value 

35 of the mixture was determined at 510 nm via the microplate reader (Varioskan LUX, 

36 Massachusetts, USA). Total flavonoid content was calculated from the rutin standard 

37 curve and presented as milligrams of rutin equivalent (RE) per milliliter of LFT (mg 

38 RE/mL).

39 1.3 Antioxidant activities assessment

40 The antioxidant activities of samples were assessed by measuring 2,2’-azino-



41 bis(3-ethyl-benzothiazoline)-6-sulphonic acid (ABTS+·), 2,2-diphenyl-1-

42 picrylhydrazyl (DPPH·), and hydroxyl (·OH) radical scavenging capacity according to 

43 the instructions of commercial kits (Nanjing Jiancheng Bioengineering Institute, 

44 Nanjing, China).

45 2. Supplementary results and discussion

46 2.1 Changes in total phenolic and flavonoid contents of tomato before and after 

47 fermentation

48 Phenols and flavonoids are valuable phytochemicals with beneficial effects on 

49 human health. As illustrated in Fig. S2, total phenolic and total flavonoid contents were 

50 remarkedly higher in LFT than in UFT (P < 0.05), indicating that total phenol and total 

51 flavonoid contents were increased after LP fermentation. These were in line with the 

52 previous findings that LAB fermentation enhanced the contents of total phenols and 

53 flavonoids of plant-based samples.3, 4 These could be due to the fact that the hydrolytic 

54 enzymes (like glycosidases and tannase) produced by LAB during fermentation 

55 released more bound and complex phenolic compounds or transformed them into 

56 simpler forms.5, 6 Moreover, the low pH environment created by LAB fermentation may 

57 also help avoid phenolic acid degradation.7, 8 Notably, total phenolic and flavonoid 

58 contents were lower in SFT than in LFT, which may be due to the transformation or 

59 degradation of several readily degradable or thermally unstable phenols and flavonoids 

60 upon sterilization,9 suggesting that LFT may be more bioactive and healthful than SFT.

61 2.2 Changes in antioxidant activities of tomato before and after fermentation

62 It is well known that antioxidant activities contribute to the alleviation or 



63 suppression of oxidative stress in the body, which helps to reduce the risk of cancer, 

64 inflammation, and metabolic disorders.10 In this current study, ABTS+·, DPPH·, and 

65 ·OH radical scavenging capacities were determined to investigate the effects of 

66 fermentation on the antioxidant activity of tomato. As depicted in Fig. S3, ABTS+·, 

67 DPPH·, and ·OH radical scavenging rates were notably higher in LFT compared with 

68 UFT (P < 0.05), and sterilization had no remarkable effect on the scavenging rate except 

69 for that of DPPH·, demonstrating that LP fermentation improved the antioxidant 

70 activity of tomato. Previous studies have pointed out that phenols and flavonoids are 

71 natural antioxidants and fermentation facilitates the release of simpler forms of free 

72 phenols, which help to improve the antioxidant activity of foods.6, 10 The findings of 

73 this study support this notion, as the contents of total phenols and flavonoids of tomato 

74 were significantly increased after fermentation, which partly explained why LFT 

75 exhibited enhanced antioxidant activity than UFT. In addition, LAB also had been 

76 reported to possess antioxidant activity, and this could also account for the higher 

77 antioxidant activity of LFT.11-13
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