Supporting Information

Maximizing ionic liquid content and specific surface area in hierarchically nanoporous hypercrosslinked poly(ionic liquid)s towards efficient conversion of CO₂ into cyclic carbonates

Hongbing Lyu, ^a Xiaochen Wang,^{*a} Wanting Sun, ^a Ergang Xu, ^a Yaping She, ^a Anqiu Liu,^{*a} Daming Gao, ^a Miao Hu, ^a Jianhua Guo, ^a Kunhong Hu, ^a Jihai Cheng, ^a Zhouyang Long, ^b Yangqing Liu ^c and Pengjie Zhang ^d

^a School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China
^b School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
^c School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224000, China
^d BGRIMM Technology Group Co, Ltd, Beijing 102600, China

Corresponding Authors * Tel: +86-551-62158395 E-mail: wxc@hfuu.edu.cn (X. Wang); liuaq@hfuu.edu.cn (A. Liu)

Synthesis and characterization of imidazolium-based ionic liquid monomers

[VIMBBr]Br: ¹H NMR (400 MHz, D₂O) (Figure S1A): δ =8.94 (s, 1H), 7.68 (t, 1H), 7.47 (t, 1H), 7.40 (m, 4H), 5.71 (q, 2H), 5.38 (t, 3H), 4.56 (s, 2H). ¹³C NMR (100 MHz, D₂ O) (Figure S1B): δ =141.4, 134.5, 132.4, 129.0, 128.1, 122.8, 119.7, 109.5, 63.3, 52.9. **Scheme S1.** Synthesis of the benzylbromide-tethered IL [VIMBBr]Br.

[VIMBCl]Cl: ¹H NMR (400 MHz, D₂O) (Figure S2A): δ =8.93 (d, 1H),7.65 (d, 1H), 7.43 (d, 1H),7.32 (d, 4H), 5.68(q, 2H), 5.31 (q, 3H), 4.57 (t, 2H). ¹³C NMR (100 MHz, D₂O) (Figure S2B): δ =139.1, 134.5, 133.3, 129.6, 129.2, 128.1, 122.8, 119.8, 109.6, 52.7, 45.5. **Scheme S2.** Synthesis of the benzylchloride-tethered IL [VIMBCl]Cl.

[MIMBBr]Br: ¹H NMR (400 MHz, D₂O) (Figure S3A): δ =8.59 (s, 1H), 7.42 (d, 2H), 7.33 (m, 4H), 5.28 (t, 2H), 4.52 (t, 2H), 3.74 (s, 2H). ¹³C NMR (100 MHz, D₂O) (Figure S3 B): δ =141.1, 136.0, 132.8, 128.7, 123.6, 122.1, 63.3, 52.4, 35.6.

Scheme S3. Synthesis of the benzylbromide-tethered IL [MIMBBr]Br.

[VIMB]Br: ¹H NMR (400 MHz, D₂O) (Figure S4A): δ = 7.65 (d, 1H), 7.43 (d, 1H), 7.37(q, 4H), 7.01 (q, 1H), 5.68 (q, 2H), 5.31 (q, 4H). ¹³C NMR (100 MHz, D₂O) (Figure S4B) δ =129.3, 129.3, 128.6, 128.1, 122.7, 119.6, 109.4, 53.1.

Scheme S4. Synthesis of the benzyl-tethered IL [VIMB]Br.

[DVIMB]Br₂: ¹H NMR (400 MHz, D₂O) (Figure S5A): δ =7.67 (d, 2H), 7.43 (d, 4H), 7.36 (s,4H), 5.69 (t, 2H), 5.34 (t, 4H). ¹³C NMR (100 MHz, D₂O) (Figure S5B) δ =134.2, 129. 4, 128.0, 122.8, 119.7, 109.5, 52.5.

Scheme S5. Synthesis of the bis-vinylimidazolium IL [DVIMB]Br₂.

Scheme S6. Synthetic route to (A) HPMBr1-DCX, (B) HPMBr0.5-B, (C) HPMBr0.5-D, (D) HPMCl0.5 and (E) HMMBr0.5.

Scheme S7. Possible catalytic mechanism of CO_2 cycloaddition reaction over HPMBr0.5.

Figure S1. (A) 1 H NMR and (B) 13 C NMR of [VIMBBr]Br using D₂O as the solvent.

Figure S2. (A) 1 H NMR and (B) 13 C NMR of [VIMBCl]Cl using D₂O as the solvent.

Figure S3. (A) ¹H NMR and (B) ¹³C NMR of [MIMBBr]Br using D₂O as the solvent.

Figure S4. (A) ¹H NMR and (B) ¹³C NMR of [VIMB]Br using D₂O as the solvent.

Figure S5. (A) ¹H NMR and (B) ¹³C NMR of [DVIMB]Br₂ using D₂O as the solvent.

Figure S6. (A) Nitrogen sorption isotherms and (B) pore size distribution curves of HPMBr0.5 prepared with the molar composition of a) P[VIMBBr]Br/FeCl₃/BCMBP=1:2:0.5 and b) [VIMBBr]Br/FeCl₃/BCMBP=1: 8: 0.5.

Figure S7. (A) Nitrogen sorption isotherms and (B) pore size distribution curves of HPB, H PMBr1-DCX, HPMCl0.5, HPMBr0.5-B, HPMBr0.5-D and HMMBr0.5.

Figure S8. SEM images of (A, B) HPMBr0, (C, D) HPMBr0.3, (E, F) HPMBr0.75 and (G, H). HPB.

Figure S9. SEM images of (A, B) HPMCl0.5, (C, D) HPMBr1-DCX, (E, F) HPMBr0.5-B, (G, H) HPMBr0.5-D and (I, J) HMMBr0.5.

Figure S10. EDS spectrum of HPMBr0.5.

Figure S11. XRD patterns of [VIMBBr]Br, P[VIMBBr]Br and HPMBrx.

Figure S12. XRD patterns of HPMBr1-DCX, HPMBr0.5-B, HPMBr0.5-D, HPMCl0.5 and HMMBr0.5.

Figure S13. Thermogravimetry curves of P[VIMBBr]Br and HPMBrx.

Figure S14. FT-IR spectra of HPMBrx.

Figure S15. FT-IR spectra of control samples, corresponding IL monomers and linear precursors: (A) HPMBr1-DCX, (B) HPMCl0.5, (C) HPMBr0.5-B, (D) HPMBr0.5-D and (E) HMMBr0.5.

Figure S16. (A-C) XPS survey scan spectra, (D-F) N 1s, (G-I) Cl 2p and (J-L) Br 3d XPS spectra of HPMBr0, HPMBr0.3 and HPMBr0.75, respectively.

Figure S17. CO_2 sorption isotherms of HPB at (A)273 K and (B) 298 K; (C) the CO_2 isosteric heat of adsorption (Q_{st}) for HPB.

Figure S18. FT-IR spectra of a) fresh HPMBr0.5 and b) recovered HPMBr0.5 after 5th run.

Figure S19. (A, B) SEM images, (C) N_2 sorption isotherm and (D) pore size distributions of recovered HPMBr0.5 after 5th run.

Sample	N [%]	C [%]	H [%]	C/N ratio	C/H ratio	Yield ^a (%)
[VIMBBr]Br	7.92	43.71	3.54	5.52	12.35	
P[VIMBBr]Br	8.48	51.16	4.16	6.03	12.30	98
HPMBr0	8.15	51.14	5.72	6.27	8.94	56
HPMBr0.3	6.85	57.16	5.16	8.34	11.07	80
HPMBr0.5	6.46	64.32	5.59	9.95	11.49	88
HPMBr0.75	6.14	63.61	5.10	10.35	12.48	94
HPMBr1-DCX	5.95	62.73	5.03	10.54	12.47	74
HPMBr0.5-B	4.81	63.56	5.17	13.21	12.29	68
HPMBr0.5-D	8.72	52.25	4.72	5.99	11.07	70
HPMC10.5	5.90	62.98	5.11	10.67	12.32	88
HMMBr0.5	5.00	68.98	5.15	13.79	13.39	63
Reused HPMBr0.5	6.11	59.43	4.78	9.73	12.43	

Table S1. Elemental analysis and synthetic yields for different samples.

^a The yield of polymer product.

Table S2. Textural properties of HPMBr0.5 prepared with the different molar composition of P[VIMBBr]Br, FeCl₃ and BCMBP.

Entry	P[VIMBBr]Br /FeCl ₃ /BCMBP ^a	S _{BET} ^b (m ² g ⁻¹)	S _{micro} ^c (m ² g ⁻¹)	${ m V}_{total}{}^d$ (cm ³ g ⁻¹)	$V_{micro}{}^{c}$ (cm ³ g ⁻¹)	Micropor e content ^e (%)	D _{ave} ^f (nm)
1	1/2/0.5	437.78	83.49	0.28	0.04	14	3.32
2	1/8/0.5	311.92	99.45	0.23	0.04	17	3.87

^a The molar composition of P[VIMBBr]Br, FeCl₃ and BCMBP. ^b BET surface area. ^c Micropore surface area and volume calculated by the t-plot method. ^d Total pore volume. ^e Calculated by V_{micro}/V_{total} . ^f Average pore size.

F	C	S _{BET} IL content		Synthesis	Ref.	
Entry	Sample	$(m^2 g^{-1})$	$(m^2 g^{-1})$ (mmol g^{-1})			
1	HPMBr0.5	558	2.31	FCA ^c	This	
2	HPMBr0.75	855	2.19	FCA	This	
3	poly[bvbim]Cl	24.18	2.53ª	FRP ^d	[1]	
4	PDMBr	205	2.57 ^b	FRP	[2]	
5	$PIL_{1:1}$	86.21	2.21ª	FRP	[3]	
6	IP 3	91.56	1.69 ^b	FRP	[4]	
7	PQP	520	2.02 ^b	FRP	[5]	
8	PDBA-Cl-SCD	211	1.44 ^a	FRP	[6]	
9	PVIm-6-SCD	797.7	0.54 ^a	FRP	[7]	
10	PAD-3	156	2.32	FRP	[8]	
11	[PAD][IDA]	132	1.72	FRP	[9]	
12	PIL-4	1.97	1.25	FRP	[10]	
13	AE-PIL-Cl	227.5	1.90	FRP	[11]	
14	PGDBr-5-2OH	218	1.88	FRP	[12]	
15	P-HVD-2/3/5	8.61	3.53	FRP	[13]	
16	PADV-2	105	2.01	FRP	[14]	
17	PDVB-[AlTMG]Br-0.2	152	1	FRP	[15]	
18	POM3-IM	575	1.01 ^b	FCA	[16]	
19	Polymers 3	904	0.48 ^b	FCA	[17]	
20	Poly-NHC-2-Pd ²⁺	569	0.52	FCA	[18]	
21	HCP-IL-7	447	0.70	FCA	[19]	
22	HIP-Br-2	534	0.3	FCA	[20]	
23	POPs-B10	824	0.81 ^b	FCA	[21]	
<mark>24</mark>	NHC-CAP-1(Zn ²⁺)	1040	1.51	FCA	[22]	
<mark>25</mark>	I _{C2} HCP-5b	1017	0.8	FCA	[23]	
<mark>26</mark>	HCP-V2	750	0.50 ^b	FCA	[24]	
<mark>27</mark>	HPILs-Cl-2	500	1.24 ^b	FCA	[25]	
<mark>28</mark>	CPIP-A-4	570	0.53	FCA	[26]	
<mark>29</mark>	IHCP-OH(1)	515	0.78	FCA	[27]	
<mark>30</mark>	Bi/HCP _B	945.59	0.21 ^b	FCA	[28]	
<mark>31</mark>	Py-HCP-Br	435	0.76 ^b	FCA	[29]	
<mark>32</mark>	HP-[C4PhIm]Br-DCX-2	763	0.9	FCA	[30]	
<mark>33</mark>	PiP@QA	301	1.89	FCA	[31]	
<mark>34</mark>	DHI-CSU-3-Br	1216	1.21 ^b	FCA	[32]	
<mark>35</mark>	[HCP-CH2-Im][Cl]-1	385	2.10	FCA	[33]	
<mark>36</mark>	PIP-3	1021.9	1.01	FCA	[34]	
<mark>37</mark>	iPT-2	810	0.57	FCA	[35]	
<mark>38</mark>	HIP-	323	0.81	FCA	[36]	
<mark>39</mark>	HIP-Cl(3)-OH	596	0.97	FCA	[37]	
<mark>40</mark>	iPHCP-12	537	0.98	FCA	[38]	
<mark>41</mark>	IHCP-2	812	0.24 ^b	FCA	[39]	

Table S3. Comparison of various poly(ionic liquid)s between the surface area and IL content.

^a Estimated from their IL units. ^b Determined from CHN elemental analysis in reference. ^c Free-radical polymerization. ^d Friedel-Crafts alkylation.

Entry	Sample	CO2 uptake ^a (mmol g ⁻¹) 273/298 K	Q _{st} ^b (KJ mmol ⁻¹)	
1	P[VIMBBr]Br	0.08/0.03	c	
2	HPMBr0	0.70/0.47	44	
3	HPMBr0.3	0.87/0.52	53	
4	HPMBr0.5	1.74/0.93	44	
5	HPMBr0.75	1.83/0.94	38	
6	HPB	2.83/1.78	26	
7	HPMBr1-DCX	1.36/0.84	42	
8	HPMC10.5	1.26/0.80	35	
9	HPMBr0.5-B	1.16/0.63	43	
10	HPMBr0.5-D	1.26/0.72	45	
11	HMMBr0.5	1.40/0.79	46	

Table S4. CO₂ adsorption performance of various polymers.

^a CO₂ uptakes at 273 K and 298 K (0.1MPa). ^b Calculated by the Clausius-Clapeyron equation. ^c Negligible.

Cl CO ₂ balloon Catalyst Cl O							
Entm	Sampla	Con. ^b	Sel. ^c				
Entry	Sample	(%)	(%)				
1	HPB	0	0				
2	HPMBr-DCX	81.8	96.5				
3	HPMBr0.5-B	91.5	97.6				
4	HPMBr0.5-D	84.3	96.9				
5	HPMC10.5	68.7	98.7				
6	HMMBr0.5	96.3	98.9				

Table S5. Catalytic performances of control samples for CO2 cycloaddition with ECH.^a

^a Reaction condition: catalyst (15 mg), ECH (5 mmol), 80 °C, 24 h, CO₂ (0.1MPa). ^b The conversion and selectivity determined by GC.

Entry Catalyst		Enovida	Temp.	Time	Yield	TOF ^a	Pef
	Catalyst	Ерохійс	(°C)	(h)	(%)	(h-1)	Kei.
1	HPMBr0.5	ЕСН	80	24	99.0	6.0	This work
2		SO	80	36	94.7	3.8	
3		ECH	70	48	91.3	0.73	[2]
4	I DIVIDI	SO	120	12	80.2	2.6	[2]
5	ID 2	ECH	100	24	99	1.0	F 4 1
6	IP 5	SO	100	24	87	0.9	[4]
7		ECH	90	6	99.4	3.4	[6]
8	PDBA-CI-SCD	SO	90	6	97.8	3.3	[0]
9	DVIm 6 SCD	ECH	50	24	98.2	1.4	[7]
10	rviiii-o-SCD	SO	80	18	97.9	1.4	[/]
11		ECH	70	24	98	0.88	۲۹۱
12	FAD-3	SO	110	8	92	2.4	[o]
13	PCDBr 5 20H	ECH	70	24	91	1.9	[12]
14	10001-5-2011	SO	70	96	90	0.49	
15		ECH	50	24	87	3.8	[1/]
16	TAD V-2	SO	90	24	96	3.4	[17]
17	[HCP_CH2_Im][Cl]_1	ECH	140	4	99	2.6	[33]
18		SO	100	20	93	0.74	[55]
19	HIP-Cl(3)-OH	SO	100	20	98	2.3	[37]
20	DUCD 12	ECH	60	60	99	0.67	[20]
21	IFFICE-12	SO	80	60	95	0.64	[38]
22	DB10%-Pa-Tp	ECH	120	96	99	4.4	[40]
23	COB 111	ECH	100	24	99	1.2	[41]
24	COF-222	SO	100	24	99	1.2	[41]
25	COFIL	ECH	80	48	98	0.68	[42]
26	COF-IL	SO	80	48	98	0.68	[42]
27	DVB-HAVIM C 19.	ECH	80	16	96.4	4.3	[/12]
28		SO	80	30	93.5	2.2	[43]
29	IM-;рир 2	ECH	80	48	96	1.4	[44]
30	1141-11 111-2	SO	80	72	84	0.85	[++]
31	VIPA-Br	SO	80	72	96	0.14	[45]

 Table S6. Catalytic activity of recent metal-solvent-additive-free heterogeneous catalyst for cycloaddition of CO2 under atmospheric pressure.

^a Turnover frequency (TOF): yield of cyclic carbonate (mmol)/[ionic sites (mmol)×reaction time (h)]

Entry	Catalyst	Epoxide	Dosage ^a (wt%)	Co- catalyst	P (MPa)	Temp . (°C)	Tim e (h)	Yiel d (%)	Ref.
1		ЕСН	3.2	None	0.1	80	24	99.0	This
•	HPMBr0.5	2011 0	0.2	1,0110	1.0	80	6	99.3	work
2		80	25	None	0.1	80	36	94.7	This
-		50	2.0	TORC	1.0	80	6	97.5	work
3 ^b	POM3-IM	ECH	53.8	None	1.0	120	8	90.0	[16]
4 ^c	Polymers 3	ECH	11.4	$ZnBr_2$	1.0	130	7	91	[17]
5	HIP-Br-2	SO	5.4	None	1.0	120	6	99	[20]
6	HPILs-Cl-2	ECH	5.4	TBAB	0.1	70	9	99.0	[25]
7	IHCP-OH(1)	ECH	0.4	None	3.0	135	1	99.0	[27]
8	Py-HCP-Br	ECH	12.6	None	2.0	120	8	99.0	[29]
9	HP-[BZPhIm]Cl- DCX-1	SO	6.5	None	0.1	120	24	90.9	[30]
10	DHI-CSU-3-Br	ECH	10.8	TBAB	0.1	70	8	99.0	[32]
11	[HCP-CH2-Im][Cl]- 1	SO	25	None	0.1	140	4	95	[33]
12	PIP-3	SO	4.2	None	1.0	100	24	98	[34]
13	HIP-Cl(3)-OH	SO	16.7	None	0.1	120	12	99	[37]
14	iPHCP-12	ECH	27.0	None	0.1	60	60	99	[38]

Table S7. Dosage of catalyst and catalytic performance of HPMBr0.5 and previously reported hypercrosslinked poly(ionic liquid)s *via* preparation of Friedel-Crafts alkylation.

^a Dosage of catalyst. ^b ethanol as solvent. ^c DMF as solvent.

Characterization of cyclic carbonates

4-methyl-1,3-dioxolan-2-one:

 ^1H NMR (400 MHz, CDCl_3): δ 4.91 (m, 1H), 4.58 (q, 1H), 4.05 (q, 1H), 1.50 (d, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 155.1, 73.6, 70.7, 19.5.

4-(chloromethyl)-1,3-dioxolan-2-one:

¹H NMR (400 MHz, CDCl₃): δ 5.00 (m, 1H), 4.63 (m, 1H), 4.45 (q, 1H), 3.81 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 154.1, 74.2, 67.0, 43.6.

4-phenyl-1,3-dioxolan-2-one:

¹H NMR (400 MHz, CDCl₃): δ 7.44 (m, 5H), 5.70 (t, 1H), 4.83 (t, 1H), 4.37 (q, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 154.9, 135.8, 129.8, 129.3, 125.9, 78.0, 71.2.

allyloxymethyl-1,3-dioxolan-2-one:

¹H NMR (400 MHz, CDCl₃): δ 5.91 (m, 1H), 5.32-5.22 (m, 2H), 4.87 (m, 1H), 4.53 (t, 1H), 4.42 (q, 1H), 4.12 (m, 2H), 3.72 (m, 2H).

¹³C NMR (100 MHz, CDCl₃): δ 155.0, 133.6, 118.1, 75.0, 72.6, 68.8, 66.3.

4-(phenoxymethyl)-1,3-dioxolan-2-one:

¹H NMR (400 MHz, CDCl₃): δ 7.31 (m, 2H), 7.03 (t, 1H), 6.92 (t, 2H,), 5.05 (m, 1H), 4.63 (t, 1H), 4.54 (q, 1H), 4.25 (q, 1H), 4.16 (q, 1H).

¹³C NMR (100 MHz, CDCl₃): δ 157.8, 154.7, 129.7, 122.0, 114.6, 74.1, 66.9, 66.2.

4-butyl-1,3-dioxolan-2-one:

¹H NMR (400 MHz, CDCl₃): δ 4.74 (m, 1H), 4.55 (t, 1H), 4.09 (q, 1H), 1.84 (m, 2H), 1. 49(m, 4H), 0.95 (t, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 155.1, 77.1, 69.4, 33.5, 26.4, 22.2, 13.8.

¹H NMR (400 MHz, CDCl₃): δ 4.75 (m, 1H), 4.53 (t, 1H), 4.09 (q, 1H), 1.86 (m, 2H), 1.51 (m, 12H), 0.90 (t, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 155.1, 77.1, 69.4, 33.9, 31.8, 29.3, 29.1, 29.1, 24.4, 22.6, 14.1.

¹H NMR (400 MHz, CDCl₃): δ 4.74 (m, 1H), 4.54 (t, 1H), 4.09 (t, 1H), 1.86 (m, 2H), 1.51 (m, 16H), 0.90 (t, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 155.1, 77.0, 69.4, 33.9, 31.9, 29.5, 29.4, 29.3, 29.2, 29.1, 24.4, 22.7, 14.1.

¹H NMR (400 MHz, CDCl₃): δ 4.74 (m, 1H), 4.54 (t, 1H), 4.09 (q, 1H), 1.85 (m, 2H), 1.51 (m, 20H), 0.90 (t, 3H).

¹³C NMR (100 MHz, CDCl₃): δ 155.1, 77.0, 69.4, 33.9, 31.9, 29.6, 29.6, 29.4, 29.3, 29.1, 24.4, 22.7, 14.1.

4, 5-cyclohexyl-1, 3-dioxolan-2-one

¹H NMR (400 MHz, CDCl₃) δ 4.67 (m, 2H), δ1.88 (m, 4H), δ1.65(m, 2H), δ1.45(m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 155.67, 76.05, 27.06, 19.45.

Supplementary References

- S. Ghazali-Esfahani, H. Song, E. Păunescu, F. D. Bobbink, H. Liu, Z. Fei, G. Laurenczy, M. Bagherzadeh, N. Yan and P. J. Dyson, *Green Chem.*, 2013, 15, 1584-1589.
- X. Wang, Y. Zhou, Z. Guo, G. Chen, J. Li, Y. Shi, Y. Liu and J. Wang, *Chem Sci.*, 2015, 6, 6916-6924.
- I. Azcune, I. Garcia, P. M. Carrasco, A. Genua, M. Tanczyk, M. Jaschik, K. Warmuzinski, G. Cabanero and I. Odriozola, *ChemSusChem*, 2014, 7, 3407-3412.
- 4. W. Zhong, F. D. Bobbink, Z. Fei and P. J. Dyson, ChemSusChem, 2017, 10, 2728-2735.
- 5. Q. Sun, S. Ma, Z. Dai, X. Meng and F.-S. Xiao, J. Mater. Chem. A, 2015, 3, 23871-23875.
- Y. Xie, Q. Sun, Y. Fu, L. Song, J. Liang, X. Xu, H. Wang, J. Li, S. Tu, X. Lu and J. Li, J. Mater. Chem. A, 2017, 5, 25594-25600.
- Y. Xie, J. Liang, Y. Fu, M. Huang, X. Xu, H. Wang, S. Tu and J. Li, J. Mater. Chem. A, 2018, 6, 6660-6666.
- Z. Guo, X. Cai, J. Xie, X. Wang, Y. Zhou and J. Wang, ACS Appl. Mater. Interfaces, 2016, 8, 12812-12821.
- 9. Y. Zhou, W. Zhang, L. Ma, Y. Zhou and J. Wang, ACS Sustainable Chem. Eng., 2019, 7, 9387-9398.
- H. Song, Y. Wang, M. Xiao, L. Liu, Y. Liu, X. Liu and H. Gai, ACS Sustainable Chem. Eng., 2019, 7, 9489-9497.
- 11. L. Qin, B. Wang, Y. Zhang, L. Chen and G. Gao, Chem. Comm. , 2017, 53, 3785-3788.
- Z. Guo, Q. Jiang, Y. Shi, J. Li, X. Yang, W. Hou, Y. Zhou and J. Wang, ACS Catal., 2017, 7, 6770-6780.
- 13. Y. He, D. Jiang, X. Li, J. Ding, H. Li, H. Wan and G. Guan, J. CO₂ Util., 2021, 44, 101427.
- Q. Yi, T. Liu, X. Wang, Y. Shan, X. Li, M. Ding, L. Shi, H. Zeng and Y. Wu, *Appl. Catal.*, *B*, 2021, 283, 119602.
- 15. W. Hui, X.-M. He, X.-Y. Xu, Y.-M. Chen, Y. Zhou, Z.-M. Li, L. Zhang and D.-J. Tao, *J. CO*₂ *Util.* , 2020, **36**, 169-176.
- 16. J. Wang, W. Sng, G. Yi and Y. Zhang, Chem Comm., 2015, 51, 12076-12079.
- 17. J. Wang, J. G. Wei Yang, G. Yi and Y. Zhang, Chem Comm., 2015, 51, 15708-15711.
- 18. S. Xu, K. Song, T. Li and B. Tan, J. Mater. Chem. A, 2015, 3, 1272-1278.
- L. Hu, H. Ni, X. Chen, L. Wang, Y. Wei, T. Jiang, Y. Lü, X. Lu and P. Ye, *Polym. Eng. Sci.*, 2016, 56, 573-582.
- 20. J. Li, D. Jia, Z. Guo, Y. Liu, Y. Lyu, Y. Zhou and J. Wang, Green Chem., 2017, 19, 2675-2686.
- 21. S. Hao, Y. Liu, C. Shang, Z. Liang and J. Yu, Polym. Chem., 2017, 8, 1833-1839.
- 22. P. Puthiaraj, S. Ravi, K. Yu and W.-S. Ahn, Appl. Catal. B, 2019, 251, 195-205.
- 23. W. Zhang, F. Ma, L. Ma, Y. Zhou and J. Wang, ChemSusChem, 2020, 13, 341-350.
- 24. X. Li, G. Chen and Q. Jia, Microporous Mesoporous Mater., 2019, 279, 186-192.
- 25. Y. Sang and J. Huang, Chem. Eng. J., 2020, 385, 123973.
- J. Li, Y. Han, H. Lin, N. Wu, Q. Li, J. Jiang and J. Zhu, ACS Appl. Mater. Interfaces, 2020, 12, 609-618.
- 27. D. Jia, L. Ma, Y. Wang, W. Zhang, J. Li, Y. Zhou and J. Wang, Chem. Eng. J., 2020, 390, 124652.
- 28. H. Zhou, Q. Chen, X. Tong and H. Liu, Colloids Interface Sci. Commun, 2020, 37, 100285.
- 29. C. Liu, L. Shi, J. Zhang and J. Sun, Chem. Eng. J., 2022, 427, 131633.
- 30. H. Song, Y. Wang, Y. Liu, L. Chen, B. Feng, X. Jin, Y. Zhou, T. Huang, M. Xiao, F. Huang and H.

Gai, ACS Sustainable Chem. Eng., 2021, 9, 2115-2128.

- 31. Q. Ren, Y. Chen, Y. Qiu, L. Tao and H. Ji, Cata. Lett., 2021, 151, 2919-2927.
- Y. Sang, Z. Shu, Y. Wang, L. Wang, D. Zhang, Q. Xiao, F. Zhou and J. Huang, *Appl. Surf. Sci.*, 2022, 585, 152663.
- 33. X. Liao, B. Pei, R. Ma, L. Kong, X. Gao, J. He, X. Luo and J. Lin, Catalysts, 2022, 12, 62.
- K. Cai, P. Liu, T. Zhao, K. Su, Y. Yang and D.-J. Tao, *Microporous and Mesoporous Mater.*, 2022, 343, 112135.
- 35. K. Wang, W. Cui, Z. Bian, Y. Liu, S. Jiang, Y. Zhou and J. Wang, *Appl. Catal.*, *B*, 2021, **281**, 119425.
- 36. X. Suo, Y. Huang, Z. Li, H. Pan, X. Cui and H. Xing, Sci. China Mater. , 2021, 65, 1068-1075.
- X. Liao, X. Xiang, Z. Wang, R. Ma, L. Kong, X. Gao, J. He, W. Hou, C. Peng and J. Lin, *Sustainable Energy Fuels*, 2022, 6, 2846-2857.
- Y. Zhang, K. Liu, L. Wu, H. Huang, Z. Xu, Z. Long, M. Tong, Y. Gu, Z. Qin and G. Chen, *Dalton Trans.*, 2021, 50, 11878-11888.
- J. Gu, P. Shao, L. Luo, Y. Wang, T. Zhao, C. Yang, P. Chen and F. Liu, *Sep. Purif. Technol.*, 2022, 285, 120377.
- 40. J. Cao, W. Shan, Q. Wang, X. Ling, G. Li, Y. Lyu, Y. Zhou and J. Wang, ACS Appl. Mater. Interfaces, 2019, 11, 6031-6041.
- S. Subramanian, J. Oppenheim, D. Kim, T. S. Nguyen, W. M. H. Silo, B. Kim, W. A. Goddard and C. T. Yavuz, *Chem*, 2019, 5, 3232-3242.
- 42. L.-G. Ding, B.-J. Yao, F. Li, S.-C. Shi, N. Huang, H.-B. Yin, Q. Guan and Y.-B. Dong, *J. Mater. Chem. A*, 2019, **7**, 4689-4698.
- 43. J. Zhang, X. Li, Z. Zhu, T. Chang, X. Fu, Y. Hao, X. Meng, B. Panchal and S. Qin, *Adv. Sustain. Syst.*, 2020, 5, 2000133.
- 44. G. Chen, Y. Zhang, J. Xu, X. Liu, K. Liu, M. Tong and Z. Long, Chem. Eng. J., 2020, 381, 122765.
- 45. Z. Xu, K. Liu, H. Huang, Y. Zhang, Z. Long, M. Tong and G. Chen, *J. Mater. Chem. A*, 2022, **10**, 5540-5549.